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Thanks, so, I was going to talk about tensor product of A∞ algebras. Let’s start
with the definition. For now, A will be a graded vector space over a field k. I could
mean Z-graded or Z/2 graded. I’ll pretend it’s Z-graded. There are a bunch of
operations mk : A⊗k → A of degree [2− k]. For now, k ≥ 1. These are required to
satisfy the following equation, for each n∑

(−1)∗mn−j+1(a1, . . .mj(ai, . . . , ii+j−1) . . . an) = 0

Just for once I’ll write down the sign, it’s
∑i−1
`=1 |a`|+ i− 1 =

∑
||a`|| −

∑
|a`| − 1.

The first equation says m2
1 = 0. The second equation says that m1 and m2 satisfy

the Leibniz rule (with strange signs), m1m2(−,−)±m2(m1−,−)±m2(−,m1−) = 0
The next one shows that m2 is associative up to a homotopy m3. The rest of them
say that this is associative up to higher homotopies.

One example is differential graded algebras. These are A∞ algebras with mk = 0
for k ≥ 3. So m1 is a differential which squares to zero and is a derivation of m2

and m2 is actually associative.
Okay, so now I want to define maps between A∞ algebras.
I’ll define an A∞ homomorphism F : A → B to be a sequence of maps Fk :

A⊗k → B of degree 1− k, you can think of this in terms of the suspension as being
a map of degree zero. These are required to satisfy an equation∑

mB
` (Fi1(. . .) . . . , Fi`(. . .)) =

∑
Fn−j+1(. . .mA

j (a1, . . . , ai + j − 1), . . .)

A naive A∞ homomorphism has Fk = 0 for k ≥ 2. That’s too much to ask in real
life so that’s why you have these more complicated things.

So F1 is a chain map, that’s the first thing this says, it induces a map on m1

cohomologies. Then F2 gives a homotopy betweenmB
2 (F1( ), F1( )) and F1(mA

2 ( , )).
In this world where everything is loose, these two guys are not equal but homotopic
with respect to this specified homotopy F2.

One more thing, I need to tell you that you can actually compose A∞ homomor-
phisms. If you have F and G A∞ homomorphisms you define the composition

(F ◦G)K =
∑

F`(Gi1(. . .), . . . , Gi`(. . .))

and this is actually associative.
Maybe a few more general things about A∞ algebras. If F1 is an isomorphism of

vector spaces, then F is invertible. The identity in this setting has F1 the identity
and all other maps zero. You can solve this iteratively in the number of inputs to
invert.

1



2 GABRIEL C. DRUMMOND-COLE

You’re interested in when F1 is just an isomorphism on cohomology. Then we
call F1 a quasiisomorphism.

Now comes kind of the main advantage of working in the A∞ world. You can
actually invert these guys. You define a dg algebra map as just having f1. To
say that two dg algebras are quasiisomorphic, you usually say there is a zigzag of
algebra maps to make this an equivalence relation. But this is not necessary in the
A∞ world. This is sometimes known as the Whitehead theorem in the A∞ world.
This is an advantage:

Theorem 1.1. • (Whitehead theorem) If F : A→ B is a quasiisomorphism
then there exists an A∞ quasiisomorphism G such that F ◦ G ∼= id and
G ◦ F ∼= id. I haven’t defined homotopy but you can think that it induces
the identity on cohomology, it’s much more than that.
• (Homological perturbation lemma) This is a homotopy notion and you can

transfer these by homotopy retracts. Say you have (A,mk), an A∞ algebra,
and you start with a chain complex (V, d). Let’s say I have these maps
i : V → A and p : A → V , chain maps with respect to d and m1. I
have h of degree −1 such that m1h + hm1 = i ◦ p − idA. So h gives a
homotopy between i◦p and the identity. Then there exists an A∞ structure
on V , µk, such that µ1 = d, and there exists F : (V, µk)→ (A,mk) an A∞
homomorphism with F1 = i. There’s actually more, a homomorphism the
other way beginning with p and an A∞ homotopy beginning with h but let’s
ignore it.

If now we require that the other composition is the identity on cohomology, this
would be a quasiisomorphism. If A is very big and V is some sub-chain complex
with the same homology, you can push the A∞ structure to the small vector space.
The main application (classically) is as follows. Say you start with (A, d, ·), a dg
algebra such as the de Rham complex of a manifold, and inside take a vector space
inside with the same cohomology, such as the cohomology itself. So split A into
the cohomology, the exact things, and the things that are not closed. In the case
of the de Rham complex of a manifold, you can take harmonic forms and H is the
Green operator, say. So you choose this so that p ◦ i = id and the output will be
that the cohomology of A has the structure of an A∞ algebra quasiisomorphic to
the original.

In general if you just have a dg algebra and you take its cohomology, then the
cohomology is a dg algebra with zero differential. But it might not have anything to
do with the original, it might be completely different. But you can find a structure
on the cohomology with no differential equivalent to the original one. For example,
the µ3 is essentially the Massey products. These are essentially µ3, you need some
condition on the elements and then that agrees with µ3.

This is the background, generalities on A∞ algebras. Now let’s look at some
disadvantages. If you have A and B dg algebras, you can take d⊗ on A⊗B which
is dA ⊗ idB + idA ⊗ dB and define a componentwise product (a1 ⊗ b1) · (a2 ⊗ b2) =
(−1)∗a1a2 ⊗ b1b2. What do you do for m3? You could take a guess and do it
componentwise but that’s not even the right degree.

Let me give an idea motivated by operads. Let me talk about Stasheff polytopes.
For n ≥ 2, it’ll be a manifold of dimension n − 2 with corners. As a symplectic
geometer, let me tell you, Kn is the moduli space of stable disks with n+1 boundary
marked points, cyclicly ordered. So K2, there is only one disk with three marked
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points. Mobius transformations act transitively. Okay, so K3, you have four marked
points, I can fix three in standard position and the fourth one can move around.
The space between is actually an interval. The endpoints correspond to the singular
things. When the marked points collide we interpret that as a bubble.

So I’m going to, a way of describing this moduli space is by trees. It has a
stratification by how many disks you have and how they’re attached. I take the ∞
as the root, put a vertex on each disk with an edge for each intersection point and
a leaf for every marked point other than∞. So just for fun, K4 is a pentagon. The
interior is a tree with a single vertex. The codimension one faces have two interior
vertices. The vertices of the polytope correspond to binary trees.

Now there’s a way of gluing these disks to go from two Kn to a higher Kn, A
map I’ll call

◦i : Kn1
×Kn2

→ ∂Kn1+n2−1.

If I have two trees I glue the root of the first tree to the ith leaf of the second one.
So now what I say is, maybe I’ll state it as a theorem:

Theorem 1.2. The Stasheff polytope Kn is a manifold with corners of dimension
n− 2 and is contractible, has the cohomology of a point.

Another important thing is the boundary. I told you that the gluing operation
goes into the boundary, but in fact, it’s better than that. ∂Kn = qKj ◦iKn−j+1.

So now for us what’s usually called the A∞ operad is precisely this, it’s the
cellular chains (using the stratification from the manifold with corners structure)
A∞(n) = (C∗(Kn), δ), and ◦i are cellular so they induce maps on cellular chains
C∗(Kn1

)⊗ C∗(Kn2
)→ C∗(Kn1+n2−1). The operad is this entire thing.

Another operad, the End-operad, if you have a chain complex A, I’ll call it
End(A)n is Hom(A⊗n, A). This is also a chain complex, you get a natural differ-
ential from dA. Here you can really compose and you get ◦i like before.

In this language, what’s an A∞ algebra? In the redefinition, an A∞ algebra
structure on (A, d) is a map of operads ρ : A∞ → End(A). That means I have for
each n a map ρn : A∞(n) := C∗(Kn)→ A⊗n which respects the compositions and
which is a chain map.

Why is this the same as before? The A∞ operad is in a way free, or quasifree,
for each number of inputs, forgetting the differential, you can build any tree as
coming from gluing trees with one vertex. There are no relations. So the map ρ is
determined by the image of the trees with single interior vertex. Call this cn, the
nth corolla. This gives me mn in the previous notation. Because any tree can be
glued, the ρ is completely determined by ρn(cn) which can be arbitrary except that
ρn(∂cn) should be δmn. So we saw ρn(∂cn) is the sum of trees with two vertices.
That must be δmn, which by definition is

∑
mn(. . . d . . .) ± dmn(. . .). Remember

that ρ respects composition, so this left hand side is∑
mj ◦i mn−j+1 =

∑
mn(. . . d . . .)± dmn(. . .)

This is the same as the A∞ relation I gave before.
Okay, why did we do this? An A∞ algebra is a map from this operad to the

End operad. If I want a tensor product, I want a map A∞ → End(A ⊗ B). So
maybe you can guess what I do. I have a map End(A)⊗End(B) to End(A⊗B).
By definition I have maps ρA and ρB so I can take A∞ ⊗A∞toEnd(A)⊗End(B).
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So we essentially need a diagonal A∞ → A∞ ⊗A∞ to get

A∞

��

End(A⊗B)

A∞ ⊗A∞
ρA⊗ρB // End(A)⊗ End(B)

OO

We have a diagonal Kn → Kn×Kn but that’s not cellular. K2 → K2×K2 is easy
because it’s a point. The higher ones you get into trouble. K3 is an interval, and
K3 × K3 is a square but the diagonal is not a cell. I deform the diagonal to the
sum of two sides.

Then what is tricky? When we first have a course in topology, you have a
diagonal map on singular chains which gives you cup product, and you can use
Alexander-Whitney which is canonical. Here with cellular chains there is no canon-
ical diagonal.

Theorem 1.3. There exists a diagonal. You can get this from the Stasheff polytopes
being contractible.

Compatibility with composition takes care of the rest. Then you can define up
to level Cn−1 and then write down an equation and solve it, but it’s in an acyclic
complex.

That won’t give you explicit expressions, but it shows it exists. Can you find an
explicit construction? You can, this was done first by Saneblidze-Humble, by brute
force. There was later work by Markl-Schnider, which says it’s a reinterpretation.
They take the cellular complex and subdivide it into a cubical complex. These
are like simplicial complexes, and there’s a canonical diagonal. Then you have to
go back, that’s the tricky part. That involves choices and everything gets messy.
Loday did a similar construction. He subdivided into a simplicial complex instead
of a cubical complex. Miraculously, they all get the exact same diagonal.

Now you can ask for additional properties of this diagonal.
You could ask for it to be coassociative. That means ∆(1 ⊗ ∆) = ∆(∆ ⊗ 1),

which would make our tensor product strictly associative. You could ask it to be
cocommutative ∆τ = ∆. You could ask for ∆ to be cyclic. What does this mean?
For the A∞(n) there is a Z/n + 1 action, the last leaf becomes the first, the first
becomes the second, and so on. You could ask that the ∆ respects this action for
each n. What would this imply? On the other side you take the diagonal action.
What would this mean about our tensor product? This would mean that if A and
B are cyclic then A ⊗ B is cyclic. This means, well, (A,mk) is cyclic if you have
an inner product, nondegenerate, and then 〈mk(a1, . . . aα), a0〉 is invariant up to a
sign of cyclic permutations of the inputs.

It is not ever possible to get a coassociative ∆, this was proved by Markl-Shnider.
The answers to the other two are yes, and even better, yes simultaneously.

Theorem 1.4. (A,Tu) It is possible to get both cocommutativity and cyclicity si-
multaneously.

Shall we continue? So maybe I’ll comment, why you can make 2 and 3 work is
that they’re invariant under a Z/n+ 1 action. You can take the usual solution and
average at each step. We can show that we can solve this inductively. The Markl
Schnider have explicit formulas for all mk. We can write down just m3 and m4.
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So m3 being cyclic determines the formula. Then m4 being cyclic isn’t enough to
determine it but being commutative is then enough. Above that you have a lot of
freedom.

Let me give one application. Let A be a cyclic A∞ algebra, finite dimensional
(at least at the cohomological level). Given this data, you produce cA, a cohomol-
ogy class on the moduli space of Riemann surfaces, H∗(qg,nMg,n,Q). This is the
uncompactified moduli space. The way it goes, you have a combinatorial model
using ribbon graphs for this guy. These are graphs, a vector space generated by
graphs with a cyclic order at the edges incident on each vertex. Then the differ-
ential is given similar to the Stasheff polytope, expand the vertex in all possible
ways. That’s the differential. It’s very nice combinatorially. Cyclicity says that
the formula doesn’t depend on some sign. Then you take the product over vertices
and edges, pairing along edges using the inner product. At the end that gives you
a number. You have to check that it is a cocycle.

As it’s written here, I should have an “even” A∞ algebra, so that the pairing is
even degree. You get a cohomology class on a twisted version of this space for an
odd algebra.

The theorem we proved, and that’s the reason we studied this thing, is that the
Kontsevich class of the tensor product CA⊗cycB = CA∪CB . The idea of this is that
the cyclic diagonal not only lets you define tensor products of cyclic A∞ algebras,
it also gives a diagonal on Mg,n which you use to compute the cup product.

There is a paper on the arxiv, the theorem is correct but the proof has a mistake.
We use the diagonal on the Stasheff polytope to give a diagonal on the ribbon
graph complex. It should be a cellular approximation of the ribbon graph complex
diagonal, and the way we argue that is wrong.

We’re all happy. Why isn’t this the end of the story? Symplectic geometers work
with curved A∞ algebras. It’s very easy to define these.

Curved means that you have an m0 term. Now you start at zero. It’s an element
of degree 2 in A. Why is it curved, what’s the main example? Take a vector bundle
over a manifold with some connection (E,∇). Then de Rham forms valued in
End(E), Ω∗(End(E)), well, here you have the curvature F∇. Then m1 = d∇ and
m2 is ∧ ⊗ ◦. The higher ones are zero. The first equation is m1(m0) = 0. This is
the Bianchi identity. The rest are more or less formal. Then m2

1 is the commutator
with m0, that’s more or less the definition of curvature.

Curved A∞ algebras are very weird. You can show the following theorem.

Theorem 1.5. (Lazarev-Schedler) If you have a curved A∞ algebra with m0 6= 0
then this is isomorphic to (A,m0, 0, . . . , 0, . . .).

We’ve seen this theorem but not in this language, This is the box flow theorem.
When you have a vector field which is nonzero, you can change coordinates to make
it constant. The bar construction of the dual of A, the mk is a vector field there.
Then the m0 is nonzero at the origin, you can renormalize to make it constant.

We don’t like these curved ones, so we’ll talk about a special kind that shows up
in symplectic geometry, called filtered A∞ algebras.

You have a vector space A and G a submonoid of R≥0× 2Z, say it’s discrete so
that if the projections E and U , then E−1|G[0, c] is finite for each c. This is given
by Gromov compactness. So take β ∈ G and you get mk,β : A⊗k → A of degree
2−K − µ(β). We enforce that m0,0 is 0. The curvature lives in this positive part.
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These will satisfy the same equations as before but now you split by β. You fix β
and split it in all possible ways.

There is a Novikov ring Λ0 =
∑
aiT

λi , with the λi increasing and going to +∞.
Now you take A⊗Λ0 and either complete with respect to the filtration or insist

that A is finite dimensional. Then mk =
∑
βmk,βT

E(β). This is well-defined by
the condition on discreteness.

Now there is a way to develop all the theory. You define the Fk which are maps
between A∞ algebras. You have F0 but you also have F0,0 = 0.

Then when you define quasiisomorphism, you mean that F1,0 is a quasiisomor-
phism. Then the Whitehead theorem and homological perturbation all go through.
Now the question is how do you define the tensor product without thinking about
operads?

You take the lazy approach and the lazy approach works. With dg algebras,
you have, well, think of A as being a right A∞-module over A. Now you take
Hom(A,A) as mod − A. Now a surprising thing happens. This is in fact a dg
algebra. The m2 is composition. The m1 is a commutator with the mk. Now if you
have units, e which is unital for m2 and vanishes for higher mk. Then you have this
map A→ Hom(A,A). With associative algebras, you multiply on the left. Take a
to a·. You can turn this into an A∞ homomorphism which is a quasiisomorphism
if A is unital. You go back by saying P (φ) is φ(1). So there’s an issue here. We
wanted to work with A∞ algebras with m0. The ones with m0 are strange. Then
A is not a right A-module over itself. But even though it’s not a module, you can
still try to write Hom(A,A), and find that this is a curved dg algebra. It’s filtered
with all mk = 0 for all mk ≥ 3.

So A ⊗∞ B = EndA ⊗dg EndB . So now maybe the only non-obvious thing, µ0

in the tensor product is µA0 ⊗ eB + EA ⊗ µB0 .

Theorem 1.6. By the homological perturbation lemma, include this with F1,0⊗F1,0,
A⊗B → A⊗∞ B, and then you can project back by evaluating at the unit, P ⊗ P
and there’s a homotopy you can write, and you get a filtered A∞ algebra on A⊗B.

In the classical case, with no filtrations, n⊗k agrees with the original tensor prod-
ucts defined for classical A∞ algebras.

Maybe I’ll just say one final theorem about this thing. I want to have a way
to decide when an A∞ algebra is a tensor product of two subalgebras. In the
associative case, if I have A and B in C, when do you have a map from A⊗B → C
induced by the product a ⊗ b 7→ ab. Well, ab should be ba. That’s a necessary
condition.

The following is maybe not homotopic but here’s a condition. So now A is an
A∞ subalgebra of a filtered A∞ algebra C. So it’s a subalgebra if the higher than
zero mk are respected. Now A and B should have units that are the same in
C. Then A and B are commuting if, there are a bunch of conditions, if you take
µk(. . . , a, . . . , b, . . .) = 0 except if there are only as or there are only bs or k = 2, in
which case ab = ba.

Another condition is that the same thing holds if one of these is whatever it
wants to be, (a . . . a . . . b . . . c . . . b), this is only nonzero if there are only a, only b,
or [another condition that was too fast]
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Theorem 1.7. If you have A and B commuting subalgebras of C and A⊗B → C
which sends a⊗ b→ m2(a, b) is injective and an isomorphism on µ1,0 cohomology.
Then C ∼= A⊗∞ B as A∞ algebras.

I don’t have time, but this model is big, but it’s good enough to prove the
theorem.


