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1. February 16: Grigory Mikhalkin: Holomorphic disk potential for
exotic monotone Lagrangian tori

Thank you for the invitation and the possibility to speak for two hours. Instead
of technical details I’ll try to give an introduction and in the second hour more into
monotone Lagrangian tori. The larger story is very old. In the second part I’ll
be talking about work in progress with Galkin. Part of this subject is even 19th
century mathematics.

Let’s start from the following question about lens spaces. Look at lens spaces
L(p, q). I don’t need to remind you what a lens space is. It’s a quotient of S3

by, think of it as the unit sphere in C2, and choose ξ a primitive pth root of unity
and take a quotient of S3 by the map that takes ξ to ξq. These are the simplest
3-manifolds after the 3-sphere. This is a topological description, well, topologically,
glue two solid tori D2 ×S1 along their torus boundary. The result will always be a
lens space, unless you get S2 × S1.

The way it’s represented analytically makes this a holomorphic manifold. We
can take C2 quotient by the same relation, (z,w) ↦ (ξz, ξqw). The quotient is an
affine toric manifold (singular). As in 3-manifolds, we knew arithmetically it was
given by two numbers. Any toric surface, here, well let’s recall the description.
In Z2 we have a convex cone generated by two integer vectors. The dual moment
map for this, you’ll have [pictures]. From the toric point of view it’s better to
think of this as two vectors up to automorphisms of the plane rather than two
numbers p and q. This toric surface is a cone over L(p, q). Now let’s ask the next
question, is this toric surface smoothable? If this was smooth you would find a
four-manifold with this lens space as boundary. Topologically we can always find,
any three-manifold is cobordant to zero. We want the same thing algebraically. So
the next question is, how about holomorphically? It’s not always possible and here
arithmetic related to Markov triples appears. If the surface is X, we should have
X =X0 in a family Xt so that X →∆, this is a fibration over a disk with the fiber
over t being Xt so that Xt is smooth at t ≠ 0 and X0 =X. We’ll put a condition on
the smoothing. Let’s recall that the main tool for intersection theory in situations
like this is the canonical class. We’ll restrict to those for which the canonical class
−c1(X) is Q-Cartier, which means that the intersection with it is well-defined over
the rationals.

Then immediately we’ll see that there’s a condition. Topologically if we look at
a three-manifold, the lens space, and ask if we can, well, if ∂Y = L(p, q), b2(Y ) the
second Betti number, is not determined. But holomorphically it is. Let us recall the
case of singularities, isolated singularities of hypersurfaces, due to Milnor. Suppose
X is in C3. If we do the smoothing Xt of this, then the smoothing is a smooth

1



2 GABRIEL C. DRUMMOND-COLE

manifold and in such a case we can say that b2(Xt)−b2(X0) = µ, this is the “Milnor
number” of the singularity, the number of vanishing cycles at our singular point.

Another thing we know which is familiar from the regulary case of hypersurface
singularities, is that the Milnor number is positive, so for example L(2,1) = RP3 is
an A1 singularity, Morse singularity, [unintelligible]. Similarly we have An singu-
larities, and you have n-spherical cycles centracted

For quotient singularities, we can also say what will be the number µ, the number
of cycles that will get contracted. This is determined by p and q. It’s easier to give
the answer in [unintelligible]. [Missed some]

It turns out that the Milnor number is width
height

− 1, and this implies that not for

any p and q this quotient singularity is smoothable at all.
If µ is an integer then this can be smoothed, and this is the so-called T -singularity

(Kollár, [unintelligible], 80s). Now we can ask a topological question, which is when
L(p, q) bounds a rational homology disk. We know this implies that, by secondary
Poincaré duality, that b1(Y )2 = b1(L(p, q)) = p so p must be a square.

However, the special case L(n2, n− 1) or more generally L(n2, dn− 1) if d and n
are relatively prime. In four dimensional topology, this was the source of rational
blowdown technique of Fintushel and Stern.

Let’s see how this is possible. The simplest example is when n = 2, we’ll look
at L(4,1). Topologically this is almost the same as L(4,−1) (which is an A3 sin-
gularity) but holomorphically this is quite different, this is µ = 0. Let’s see how it
is possible, but the part of the audience familiar with Fintushel–Stern knows how
this goes.

What happens is that the singular point is replaced with, the vanishing cycle is
Lagrangian, but if it’s non-orientable it won’t contribute to integer homology. The
simplest rational blowdown is on a real projective plane. Removing RP2 from CP2

leaves a neighborhood of an imaginary conic. This is a resolution of [unintelligible],
the minus version of this and RP2 have the same [unintelligible]. So RP2 is ∣x∣2 +
∣y∣2 + ∣z∣2 = ∣x2 + y2 + z2∣, and the quotient here is a Morse function with the fiber
over 1 RP2 and the fiber over zero an imaginary conic x2 + y2 + z2 = 0.

This is transparent from the point of view of 2-dimensional homology. What was
noticed in particular by, there were two papers exploring this trick [unintelligible].
We have a complete description of the quotient singularities which are smoothable
and transparent, and if our singularity, if we projectivize, pass to a compact man-
ifold, compact surface only with T -singularities, then you can hope to get simply
connected manifold with the same second homology from singular T -surfaces. This
was explored in two papers, first Hacking–Prokhorov in the case K < 0 and then
Lee–Park in the positive case. For us it will be more interesting to consider K < 0
because this is the case for CP2. Lee and Park, let me say though, constructed

simply connected general type surfaces with K2 = 2, so exotic CP2#7CP
2
.

So Hacking and Prokhorov did classify completely, gave a classification of toric
Del Pezzo surfaces with T -singularities. Let us recall first the non-singular, the
19th century classification, the Del Pezzo classification. If we have a surface which
is a smooth surface, if it is smooth and the canonical class is negative, then this
is a Del Pezzo surface and the classification is CP2, CP2 blown up in up to eight
generic points, or CP1 ×CP1.
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If we go back to the smoothing, if we smooth a Del Pezzo, it’ll also be a Del
Pezzo. If we know where we are before and we know the Milnor fibers we know
where we are afterwards.

Let me describe the classification, which is separate in each case. It’s essentially
arithmetic. In particular for CP2, the classification is given by so-called Markov
triples, the equation a2 + b2 + c2 = 3abc, this is the Markov equation.

Then in P(a2, b2, c2), the weighted projective space, then all three singularities
are T -singularities with µ = 0.

[pictures]
This answers the problem of finding triples of vectors such that if I look at the

triangle, each pair is the pair that givse this kind of T -singularity with T = 0. So
the height should be equal to the weight in every case.

So far we saw the appearance of the triples is toric geometry, toric degenera-
tions of CP2. Markov triples have a rich history. Markov himself noticed that the
solutions are all obtained from the obvious solution (1,1,1), because this equation
is quadratic in each variable, by elementary moves (which also reappeared as clus-
ter mutations) (a, b, c) ↦ (a′, b, c) with a + a′ = 3bc. So we can mutate (1,1,1)
to (1,1,2), and mutate that as well to (1,5,2), and from there to (1,5,13); if we
preserve 1 then we get every other Fibonacci number; we get (29,5,2)

[missed a lot thinking about Markov triples, verifying that (1,1,1) and (1,1,2)
are the only Markov triples with repeated index]

As a corollary, there are infinitely many monotone Lagrangian tori inside CP2.
The list misses one case when k2 = 7. Each has its own version of a Markov equation.
The example is the Markov triple corresponding to (2,1,1), the Chekanov torus.

Another example is L(1,1,1), the standard torus. For the second example, for the
Chekanov torus, this is dual to the triangle [picture]. In this case, the statement
about potential for the standard torus, the projections of holomorphic disks are
the three intervals and nothing les. For the (1,1,2) triangle, you have the three
projections and in addition, two more inside of the cone, so in the dual language, the
disk will go to the singular point. Then we’ll have to make sense of this holomorphic
disk from the smoothing of singularities. Here we’ll have to look how it behaves
under smoothing.

[pictures]
Now let’s go to our work with Sergei. Let’s see how to get the mutations of

the potential defined with [unintelligible]. For this, to get the potential, we pass
to the tropical limit for the smoothing. When we pass to the tropical limit for
the smoothing, let’s recall our situation. We have a projective, we have a family
over the disk, and X0 is a projective surface and Xt is a projective surface, these
are toric, but X is not toric. Then if we pass to the tropical limit, rescaling of
the norm part, a certain rescaling and combining, we use the log, use the log map
which is in some sense a moment map from CPN to RN , and this goes to ∞ as the
parameter in the base disk ∆ goes to 0. Then the logarithm at t takes (z0 ∶ ⋯ ∶ zN)
goes to [unintelligible]. Then images of holomorphic disks are trees here, and the
surface Xt becomes a two dimensional polyhedral complex. Let me first consider
the example which corresponds to (2,1,1). In the case here you have a mutation
to (1,1,1) and this mutation can be made inside, is given by a pencil in weighted
P3, which will always be the case. Then P3 in the weighted tropical limit is R3

completed at ∞ according to the fan.
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This means we start from the standard triangle, the (1,1,1) triangle, and pass
to another triangle, and in the tropical limit of a general surface in the pencil, this
is a surface such that inside the triangle we do a tropical [unintelligible]-ification.
The modification is that I get another branch [picture].

Let me draw the same picture in logarithmic coordinates [picture]. I get a union
of three half-planes, connected at the boundary in two different ways. We have
a book with three pages. Two of them correspond to bigons and the other to a
corner, and has two ways to let the disks go to ∞ and end. The whole pencil is
obtained like this [picture]. This allows us to compute tropical disks.

In the remaining five minutes, let me say the rule for mutation of the potential
and this rule will be consistent with [unintelligible]. We’ll independently prove a
relative correspondence theorem for tropical disks. This is joint work in progress
with [unintelligible].

Okay, so let me say how to get a mutation. Let’s make the first step. How do
we do the mutation? What was the conjecture? To do the mutation, the easiest
thing, the rule for the mutation starts from a Markov triangle with three parts.
The first thing is that we sholud decide which one we want to mutate. [picture]
Then we make that one horizontal. Then we have the cluster mutation, divide by
1 + x, essentially. [pictures]

2. Ping Li: May 31: On the uniqueness of the complex projective
spaces

My talk will be divided into two parts. In the first part I’ll discuss the uniqueness
of CPn in terms of topology. This is the main part. If time permits I’ll also discuss
uniqueness in terms of spectra of the Laplace operator.

First of all, let’s recall some basic facts of CPn. On this, we have a canonical
metric, the Fubini–Study metric gFS , and it’s a complex manifold with the standard
structure Jstand. This is Fano (meaning c1 > 0); the metric is Kähler and Einstein.
The integral homology ring is H∗(CPn,Z) = Z[t]/⟨tn+1⟩. Because c1 > 0 we can
choose t in H2 to be positive. Then the total Chern class is c(CPn) = (1 + t)n+1
and the total Pontrjagin class is p(CPn) = (1 + t2)n+1.

Conversely, you can ask, among all this data, how we can pick up as little
information as possible to characterize CPn.

Theorem 2.1. (Hirzebruch–Kodaira 1957) If M is Kähler and is diffeomorphic to
CPn with the standard smooth structure, then

(1) M is biholomorphic to CPn if n is odd.
(2) M is biholomorphic to CPn if n is even and c1 is not of the form −(n+1)t.

Here t is still the positive generator of H2(M,Z).

The idea of the proof, note the year of publication. That year Kodaira has just
found his fundamental results, Kodaira embedding and vanishing, and Hirzebruch
has established higher dimension Riemann–Roch. So this is a combination of these
two remarkable theorems.

So first show that the Todd genus of M is td(M) = 1. Then apply Kodaira
embedding. Now we know that Hirzebruch–Riemann–Roch is valid for all complex
manifolds; at the time it was only valid for projective space. So they needed to
embed holomorphically into some projective space.
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Then use Herzebruch–Riemann–Roch to show that c1(CPn) = (n+ 1)t for n odd
or ±(n + 1)t for n even. Suppose c1(L) = t, since t is positive, we can choose a
holomorphic line bundle L in the Picard group of M so that the class of L is t.
Then Hq(M,O(L)) is 0 if q > 0 by Kodaira vanishing. This implies that only
H0(M,O(L)) matters, which is χ(M,L), and then by Hirzebruch–Riemann Roch
you can show that this is n + 1. Then we can establish a biregular equivalence to
the projectivization of H0(M,O(L)) ≅ CPn.

The second part of the argument can be refined, actually. This was done by
Kobayashi and Ochiai as follows. Let M be Fano, so c1 > 0. We define I(M) to
be the Fano index of M , defined as th the largest possitve integer which divides
the first Chern class. So for example, I(CPn) = n + 1 and I of the hyperquadric in
CPn+1 = n.

Then Kobayashi and Ochiai showed the following result, inspired by this. Sup-
pose M is Fano. If the Fano index is at least n + 1 then M is biholomorphic to
CPn. I didn’t need to assume Fano, to define index. If the index I(M) = n, then
M is biholomorphic to a hyperquadric in CPn+1.

The additional requirement is because c1(M) might be negative in the even case.
In 1977, Yau noticed that, as a corollary to the Calabi conjecture, there is a

Chern number inequality involving c1 and c2.

(1) The condition “diffeormorphism” can be relaxed to “homeomorphism” due
to Novikov’s result from the 1960s on the homeomorphism invariants of
rational Pontrjagin class.

(2) The even dimensional requirement can be removed by the Chern number
inequality (negative case), which states that if M is Kähler and c1(M) < 0,
then

c2(−c1)n−2 ≥
n

2(n + 1)
(−c1)n

with equality if and only if M is holomorphically covered by the unit ball.
If the first Chern class is −(n + 1)t, then we find that we attain equality,
and then this is holomorphically covered by the unit ball, which it is not.

Then the theorem, due to Hirzebruch–Kodaira, Yau, is that M is Kähler and home-
omorphic to CPn then it is biholomorphic to CPn.

Then we ask whether the conditions homeomorphism and or Kähler be further
relaxed?

For general n, we don’t have any essential relaxation but when n is small enough
we have the following, some results.

Theorem 2.2. (many)

(1) (Yau, 1977) For n = 2, a compact complex surface, we have a very strong
characterization. We don’t need Kähler, and H∗(M2,Z) =H∗(CP2,Z) (as
a ring) implies that M2 is biholomorphic to CP2. This solved the [unintel-
ligible]conjecture.

(2) (Lanteri–Strappa, 1980) for n = 3, for M compact Kähler and H∗(M2,Z) ≅
H∗(CP3,Z) then M is biholomorphic to CP3.

(3) (Libgober–Wood, 1999; Debarre 2015) If n = 4 or n = 6, M is compact–
Kähler and has the same cohomology ring, then M is biholomorphic to CP4

or CP6 or is covered by the ball. If n = 5 then M is biholomorphic to CP5.

Let me give a short proof of Yau’s result. So b1(M) = 0 by this assumption. Then
by classification of compact complex surfaces, it is Kähler if and only if b1 is even.
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So Kählerness can be deduced. We can use Riemann–Roch to show that c21(M) = 0
and c2(M) = 3. Then if c1 > 0, then c1 = 3t, and so by Kobayashi–Ochiai, this is
CP2. If c1 < 0 then by Yau, this is covered by B2, so this is a fake projective plane.
A very recent result of Prasad–Yeung implies that H1(M,Z) is nonzero torsion for
a fake projective plane, so H2(M,Z) has torsion, a contradiction.

You need more and more complicated things to get to the expected case as the
dimension rises.

Conjecture 2.1. (Libgober–Wood and Debarre) If M is compact Kähler and ho-
motopy equivalent to M , or more weakly, M has isomorphic integral cohomology,
then M is biholomorphic to CPn.

If you read Kobayashi–Ochiai and Yau and Hirzebruch–Kodaira carefully,

Theorem 2.3 (L.). if M is compact Kähler and has the same cohomology ring as
H∗(CPn,Z), so that the total Pontrjagin class p(M) = (1 + t2)n+1, this technical
assumption, this is strictly weaker than homeomerphism. This has no torsion, so
rational and integral Pontrjagin classes coincide. Then

(1) M is biholomorphic to CPn if n is odd
(2) M is biholomorphic to CPn if n is even or covered holomorphically by the

unit ball.

Remark 1. (1) The assumptions are weaker than homeomorphism, due to
Novikov’s result.

(2) If n is even, we still have two possibilities. But if we further assume that
π1(M) is finite when n is even, you can drop this possibility of being holo-
morphically covered.

Why should we have this? It’s a biproduct of the reading of the original papers.
It’s also due to another result in transformation groups. We have the assumption
that the total Pontrjagin class must be the standard form.

A sketch of the proof. We show that hp,q(M) should be 0 for p ≠ q and 1 for
p = q. Then the Todd genus of M , td(M) = ∑n

g=0(−1)qh0,q(M) = 1.
This genus is a complex cobordism invariant, in the sense of Hirzebruch. Every

complex genus corresponds to a power series with constant term 1, whose charac-
teristic power series is x

1−e−x , which we can slightly rewrite as e
x
2

x

e
x
2 −e−

x
2
, you can

recognize that this is the Â-genus, which can be defined for any oriented smooth
manifold, because it is an even power series.

So if we formall write c(M) =∏m
i=1(1 + xi) for m ≥ n, so c1(M) = ∑xi then

1 = td(M) = ∫
M

m

∏
i=1

xi

1 − e−x

= ∫
M

e
∑xi
2 ∏

xi

e
xi
2 − e−

xi
2

= ∫
M

e
kt
2 ( t

e
t
2 − e− t

2

)n+1

because for oriented smooth manifolds you can use Pontrjagin classes to define your
genus.

Using the resudie formula you get the coefficient of yn in (1+y) k+n−1
2 , which, well,

it depends on whether this is an integer or half-integer. So something elementary,
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you still have to say something, this is n+1 if n is odd; if n is even, this is ±(n+1),
there is a sign problem. We conclude the theorem.

Let’s complete the technical result. This has the assumption about the Pontrja-
gin class, being in the standard form. This result is related to a famous conjecture
in transformation group theory.

Conjecture 2.2. (Petrie, 1970s) LetM2n be a smooth oriented manifold homotopy
equivalent to CPn and M admits a smooth and effective circle action, then p(n) is
the standard form, (1 + t2)n+1, where t is any generator of H2(M,Z).

Up to now the conjecture is still open. But there are partial results toward this
conjecture, which is why this technical result makes sens.

Theorem 2.4. ([unintelligible]–Witking, 2004) Let M2n be a smooth manifold ho-
motopy equivalent to CPn and T k acts on M2n with k > n+1

4
, smoothly and effec-

tively, then the conjecture holds; p(M) is the standard form.

Our second result is just a combination of my result and this result. We wanted
compact Kähler and homotopy equivalent (or weaker, the same cohomology ring).
Now if the underlying manifold has this underlying symmetry, we get this.

Theorem 2.5. (L.) If M is compact Kähler and homotopy equivalent to CPn and
M admits a torus action, smooth and effective, for k > n+1

4
, then M is biholomorphic

to CPn.

I want to briefly outline the second part in terms of the spectrum of the Laplacian.
Let’s begin for some general observations. Suppose we have a closed oriented

Riemannian manifold. Then we have d ∶ ΩpM → Ωp+1M , and the metric induces
a formal adjoint of this operator, d∗ ∶ Ωp(M) → Ωp−1M , and then we get the
Laplacian ∆ ∶= dd∗ + d∗d ∶ Ωp(M) → Ωp(M). The eigenvalues are discrete and
have a sequence Specp(M,g); the operator is nonnegative, so these eigenvalues are
non-negative and tend to ∞. The eigenvalues may have multiplicity. We denote it,
they may repeat. By Hodge theory, the multiplicity of 0 is the pth Betti number of
the manifold. So we have this question. How does the spectrum {λk,p} reflect the
geometry of (M,g)? Or you may use a more fantastic sentence.

Can one hear the shape of the drum by its frequency?

In general, due to examples (this is an observation of Milnor), there exist non-
isomorphic pairs (M1, g1) and (M2, g2) with the same spectra. In general the
spectrum cannot determine the manifold. We can continue, a well-known result of
Patodi says whether or not the metric g is flat, of constant (sectional) curvature,
or Einstein, is completely determined by the spectrum of the Laplacian.

This means that given two Riemannian manifolds, if they have the same spectra,
if one is flat, the other is. If one is constant sectional curvature, the other is. If one
is Einstein, the other is.

Let me go to CPn. For general manifolds, you cannot hear the shape. But if the
drum is special enough, you should have some positive result.

Another result, maybe Gilkey, you can check, for a compact Kähler manifold
(M,g, J), and the spectrum is the same as (CPn, gFS , J) then the two are holo-
morphically isometric.

Another question, then, is whether, for (M,g, J) compact Kähler, if Specp agrees
for some fixed p, can we conclude the same?
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Some partial results. When p = 0 or 1, for n ≤ N (some concrete integer), this
is true. For p = 0 this is maybe n ≤ 6 and for p = 1 something like n ≤ 45. I forgot
who did this.

I’m concerned with the next case, when p = 2. If n ≠ 2,8, this holds. This is due
to B. Y. Chen–Vanhecke. For p = 2,8, Goldberg claimed a result that was incorrect.
Farther together with [unintelligible]obtained some other results for other p. This
is in Tohoku.

What I want to say, is p = 2, n = 2, for this case, this is a compact complex
surface, this is true, you use some argument to see that. For n = 8, the proof
of Goldberg doesn’t work, the mistake was not easy to find, he used a result of
Kobayashi, an early result. I noticed this only very recently, but later, Perrane
published a result reproving p = 2 case by Kobayashi–Ochiai but this is wrong too.

Let me briefly explain why their proofs are false. The false idea was carried over
to the second paper.

So he wanted to use Kobayashi’s earlier results. The claim is that for (M,g)
Kähler–Einstein with positive scalar curvature (so Fano with a compatible Einstein
metric) and so that the scalar curvature is SgFS

on (CPn, gFS), then Vol(M,g) ≤
Vol(CPn, gFS), with equality if and only if M is biholomorphically isometric to
CPn.

I thought this must be wrong, because this is a very famous conjecture. This is
the same as the following case.

For M with c1 > 0, and a Kähler–Einstein metric, then cn1 (M) ≤ (n + 1)n
with equality if and only if M is biholomorphic to CPn. The reason is easy.

It’s Kähler–Einstein, so the Ricci form Ric(ωg) = ωg so Ricn(ωg) = ωn
g . This was

recently resolved by Kento Fujita.
What Goldberg outlined is the result of the following weaker form. If M has

c1 > 0 and there exists a Kähler–Einstein metric then cn1 (M) ≤ n+1
I(M)(n + 1)

n with

equality if and only if M is biholomorphic to CPn. This should be well-known for
several decades in complex algebraic geometry.

This was one thing we needed to correct. The second thing was some differential
geometry, where he calculated some pointwise, this is not easy; some details must
be, he used some early results but his idea is very good. He misused some key
point of Kobayashi. The Kobayashi results are now so comprehensive, so many
details should be checked to make sure that the otuline of Goldberg’s proof is this
result. When I carefully check, there is even no detailed proof of this Chern class
inequality because it’s been well-known to experts for decades. [some discussion of
the difference between the two]

He also made some mistakes in calculating some square norms of tensors. So
for other p the statement must be reproved. The Perrone proof is also false. He
missed, it’s my duty to rewrite this topic again to make everything clear and clean
and correct. He said he rescaled the metric if necessary, but this is not valid, because
at the beginning you fix the spectrum. If you rescale the metric, the eigenvalues
are rescaled as well. You cannot rescale the metric later. This is a key mistake.
My duty is to rewrite or reprove all of these results. This is ongoing. I hope I can
complete it this summer.


