
INSTITUTE FOR BASIC SCIENCE CENTER FOR GEOMETRY

AND PHYSICS IRREGULAR SEMINAR

GABRIEL C. DRUMMOND-COLE

1. May 26: Ziming Nikolas Ma: Witten–Morse theory and mirror
symmetry

I’m happy to be here and give a talk. Let me begin on part one, which is
Witten–Morse theory. I’m going to start from very fundamental stuff. What we
are considering is an oriented (compact) Riemanian manifold M , we’re considering
a Morse function onM , f ∶M → R. The critical points {pi} are isolated and at each
critical point the Hessian is nondegenerate. The set of critical points is Crit(f).

The Morse Lemma basically tells you that locally near pi I can write this in a
standard form

f(x) − f(pi) =
x21 +⋯ + x2n−k − (x2n−k+1 +⋯ + x2n)

2
.

The degree of pi is defined to be k, the number of negative directions. This is the
notation. The set of critical points can also be given an index to distinguish critical
points of a fixed degree.

There is a well-known Morse complex that one can construct to detect the topol-
ogy of the manifold. The complex looks like

⋯→ CMk−1
f → CMk

f → CMk+1
f → ⋯

where CMk
f is the sum of Cp over critical points in Critk(f). The differential, I’ll

specify by

⟨δp, q⟩
is the count of gradient flow lines from p to q. This is a signed count, so some of
them count as +1 and some as −1.

It is a known fact that H∗(CM∗
f , δ) ≅ H∗dR(M ;C). This is the Morse complex

and what Witten suggests is giving me a Morse function, a natural object to look
at is the de Rham complex of the manifold

⋯→ Ωk−1(M)→ Ωk(M)→ Ωk+1(M)→ ⋯
which is God-given. Now we have f ∶M → R our Morse function and with a small
constant h̵, Witten suggests doing a twist, twisting the de Rham differential by the
Morse function. So

df = e−
f
h̵ de

f
h̵

and this differential is d+h̵−1df∧. There is also an adjoint operator d∗f = e
f
h̵ d∗e−

f
h̵ ι∇f .

Then we can define the Witten Laplacian ∆f = dfd∗f + d∗fdf .
What Witten did is to look at the eigenvalues of the twisted Laplacians and

look at how they move as h̵ moves. We want to see how the eigenvalues move. At
the beginning, the eigenvalues are spread out and the eigenvalues, some of them
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go to zero exponentially fast (finitely many). Some will go to positive ∞. We are
interested the eigenvalues that eventually are less than one in the whole de Rham
complex. We are interested in the eigensubcomplex with eigenvalues less than 1.
It’s kind of obvious that this subcomplex has the same homology as the de Rham
complex, and he identified it with the Morse complex.

There is a map from the Morse complex ϕh̵ ∶ CM∗
f → Ω∗<1(M) and this is an

isomorphism of vector spaces. It will send the critical point p, and the image is a
function concentrated around p.

To be more precise let me give an example. Let me locally take my Morse

function to be f = x2
1−x

2
2

2
on R2, with critical point the origin. The eigenform

ϕh(0) =
1

(πh̵) 1
2

e−
x2
1+x

2
2

2h̵ dx2

which is

e
f(x)−f(0)

h̵ ( 1

(πh̵)− 1
2

e−
x2

h̵ dx2).

Some pictures of this.
After this identification, there is a next level of identification, you can identify

the differentials:

Theorem 1.1. (Witten, Helffer–Sjöstrand)
The limit as h̵→ 0 of df is δ.

More precisely, if p is of index k and q of index k + 1, and there are the two
eigenforms associated to them, I’ll look at the operation

⟨df(ϕh(p)),
ϕh̵(q)
∣∣ϕh̵(q)∣∣

⟩ = e−
f(q)−f(p)

h̵ ⟨δp, q⟩(1 +O(h̵))

The left hand side is an integration

∫
M
dfϕh̵(p) ∧

∗ϕh̵(q)
∣∣ϕh̵(q)∣∣

.

2. Witten deformations of product structures

This is a conjecture of Kenji Fukaya. Originally we just considered the de Rham
complex, which is a differential graded algebra. As a differential graded algebra
it satisfies the following property, the defining property of a differential graded
algebra:

d(α ∧ β) = dα ∧ β + (−1)∣α∣α ∧ dβ.

After the twist, there is a reasonable operation, to look at Ω∗<1(M) ⊗ Ω∗<1(M) →
Ω∗<1(M), and what you do is to wedge together and then project to the subspace
of small eigenvalue, orthogonal projection using the Riemannian metric.

To satisfy the correct properties, then you should take three different Morse
functions, so that in the codomain the Morse function is the sum of the other two.
Graphically, we have m2 represented by a trivalent directed tree with two inputs
and one output. In the internal vertex you put the wedge product and on the
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outgoing edge the projection.
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Theorem 2.1. (Case of m2)(Chen, Leung, [M]) The limit limh̵→0m2 is the count-
ing of some number of trees, satisfying some genericity conditions.

Let me spell it out. I have three critical points, p1, p2, p3, and I associate the
eigenform to them

⟨m2(ϕh̵(p1), ϕh̵(p2)),
ϕh̵(p3)
∣∣ϕh̵(p3)∣∣2

⟩

is the same as

e−
1
h̵ (f3(p3)−f1(p1)−f2(p2))#

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

p1

∇f1

DDD

""D
DD

D

p2

∇f2

zzz

||zzz
z

∇f3

��
p3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(1 +O(h̵))

Now m2 is not associative so there are higher structures, let me start with m3

m3 ∶ Ω∗f1,<1 ⊗Ω∗f2,<1 ⊗Ω∗f3,<1 → Ω∗f4=f1+f2+f3,<1

which satisfies
[m2,m2] = ±[m1 = d,m3].

So how to write down m3? basically there are two trees:

f1

??
?

��?
?? f2

��
�

����
�

f3
��
��
��
�

����
��
��
��

H12=d∗f12G12

???

��?
??

��

and the other tree with the same inputs.

Theorem 2.2. (Case of m3) (Chen, Leung, [M])
Suppose I have four critical points, do the same thing,

⟨mT1

3 (ϕh̵(p1), ϕh̵(p2), ϕh̵(p3)),
ϕh̵(p4)
∣∣ϕh̵(p4)∣∣2

⟩
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is the same as

e−A/h̵# (count of these trees) (1 +O(h̵
1
2 )).

I have ten minutes, let me just sketch the proof. So the difficulty comes from
doing the approximation for the Green’s kernel. Look at the diagonal in M ×
M . Originally I have a kernel function defined, a kernel ∆f,yHf(x, y) = d∗f,y(I −
Py) (e−

f(y)−f(x)
h̵ δ∆(x, y)) and this is too singular, so I replace δ∆(x, y) with a smooth-

ing δ∆h̵(x, y). [Explicit formula]. Life is better but we still need to, from the a
priori estimate, one can localize to a sum over gradient trees and each gradient tree
localizes the integral over the two points x and y.

Then for each gradient tree one needs to comput this thing, that’s where the
WKV approximation comes in. So because I have cut off from the gradient tree,
these two points are away from the critical points, so now the equation becomes
something like

∆f,yĤf(x, y) = d∗f,ye−
f(y)−f(x)

h̵ e
−∣∣x−y∣∣2]

h̵ ( − − ).

So we should rewrite this without x, so look at the equation

∆fξ = d∗fe
−f
h̵ (e

−g
h̵ ν)

where hat means smoothed versions. So ξ = e−ψ/h̵(w0 + w1h̵
1
2 + ⋯) and we need a

guess for ψ.
A first guess is

ψ0(x) =min
z∈M
(f(z) + g(z) − ∣∣z − x∣∣f)

which is the distance associated to ∣df ∣2 − g0. If I write this, well

f(x) +min(g(z) + ∣∣z − x∣∣f − (f(x) − f(z))).

So the two pieces are positive and the absolute minimum happens along the a
gradient flow line.

Now this is still too singular. Now we have a hypersurface passing through x0,
which I call U . Then one can parameterize the neighborhood of the flow line using
the geodesic lines associated to this metric. I think I will stop here for the first half.

3. Scattering diagrams

I want to talk about SYZ mirror symmetry (Fukaya). I want to consider a
Calabi–Yau manifold, compact for now, with ω and J . As an idea, we can assume
it to be compact, it’s Calabi–Yau with Lagrangian fibration B. The base is real
dimension two and X is complex dimension two. For technical reasons we assume
there is a Lagrangian section. There may be some singular points. The base is a
smooth part B0 union with Bsing which is codimension two. The generic fiber is a
smooth torus and a singular fiber is a degenerate torus.

Basically we are looking at the A-model. I mean I am counting holomorphic
disks which have boundary inside a smooth torus and hit the singular fibers.

To take the dual torus fibration, we need to remove the singular fibers and then
do fiberwise duality. So we get (X0, ω, J) over B0 (which has an affine structure).
This is T ∗B0/Λ∗ with the standard symplectic form. Then we should add back in
the holomorphic disks. So there is some quantum data to get to (X,ω) which is
precisely those holomorphic disks.
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What exactly is that holomorphic disk data? To be more precise, on B0 there is
an exact sequence of lattices so that at each point on B I can look at π2(x, p−1(u))
where u is a generic point, and we get

0→ π2(x)→ π2(x, p−1(u))→ π1(p−1(u))→ 0

So locally the fiber we get π1(TNu ) = ZN and π2(x) gives me ZM−N . This is in N
complex dimensions.

What I’m trying to look at is α ∶ D → X such that the class of α is inside
π2(X,p−1(u)) with Maslov index 0. You quotient by a relation and I won’t be
precise. The moduli will help me to recover my manifold. There is a map from this
to M, the lattice bundle π2(x, p−1(u)) which projects to B0. This map is “take
homotopy class” and this map is codimension one from dimension counting.

This structure tells me how to go from X0 to X. So to be more precise, the
image on the base should be some lines, the codimension one submanifolds. Those
are called walls. To make life easier, we look at a contractible neighborhood on the
base. We look at what happens inside a contractible neighborhood. First of all we
can trivialize, take the product with our contractible neighborhood U . Then we
can look at the strcuture of the walls.

A scattering diagram is a union of walls ⋃(ℓi, fi). What does each one look like?
ℓi is a ray or a line. This means there is a holomorphic disk which propagates in
the direction of the ray. A wall has a holomorphic disk on top of it. Then fi is
basically a generating series which counts the number of holomorphic disks are on

top of it. So fi = ∑a(i)m wm where a
(i)
m is the count of holomorphic disks. The lattice

m has some restrictions. I’ll make it clear.
Anyway I have a structure like this that will help me to capture the holomorphic

disk data. What is scattering? It’s a procedure that governs this package of data.
It basically comes from the gluing of holomorphic disks. The picture is, say you
have a part of the base and one ball propagating in one direction and another one
hitting it in a transversal direction (pictures). So basically these two disks can glue
by a pair of pants to give a new disk. The there is a new wall where they intersect.
This is the scattering effect.

In general the structure of walls can be very complicated and the generating
series can have infinite sums at a point.

Suppose I have ℓi = R≥0ri + bi or Rri + bi, then fi = ∑a(i)m wm. So r(m) gives
me a function and then I need to fix a metric, flat, Riemannian, on U . Then this
r(m) is a one-form on U . I will need Novikov theory to lift toM. Anyway, there
is a gradient vector field Vm associated to this metric. I need to look at only the
m such that Vm is parallel to ri.

Instead of thinking about this as a function, we’ll think about it as a vector field.
Where does the vector field come from? Formally I attach a vector field and I get
a Lie algebra structure h, and I need to specify

[wm1 ⊗ ∂n1 ,w
m2 ⊗ ∂n2] = wm1+m2∂⟨r(m2)n1⟨n2−⟨r(m1),n2⟩m1

.

Now imagine I have two walls. [picture] Exponentiating the Lie algebra elements
I get an automorphism inside the vertex group. At first if I look at a loop around
the origin in the counterclockwise direction, I get Θ−10 Θ1Θ0Θ

−1
1 . There is a unique

way to add walls in the first quadrant and what they show is that this is unique
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such that the product is equal to the identity:

Θ−10 Θ1(∏Θqi)Θ0Θ
−1
1 = id.

We want to say that this scattering procedure is equivalent to solving the Maurer–
Cartan equation.

So h has elements ∑a(i)m wm ⊗ ∂n and we enhance it to g = ⊕Ω∗(B0)wm ⊗ ∂n).
This is a dg Lie algebra with the standard generalizations ∂̄ and { , }. So for
example ∂̄(φwm ⊗ ∂n) = dφwm ⊗ ∂n and some generaliziton for { , }.

[missed some] I need to do some gauge fixing H ∶ g→ g[−1].
So H(αwm ⊗ ∂n), I can pull back and get (∫

0
−∞ τ

∗
m(α))wm ⊗ ∂n where τm ∶

R ×B0 → B0.
Now there is a sum over trees formula. Basically to solve the equation, we look

at all the sums over trees, we put ψ1 at the inputs. The internal vertices get − 1
2

the Lie bracket and on the internal edges the H operator. So each tree gives ℓT ,
and I can define ψ to be the sum over all trees of all these operations. This is a
solution to the Maurer–Cartan equation.

If we produce a solution in this way, well, let me write down the theorem

Theorem 3.1. (Chen (a different Chen), [M]) The limit to ψ as h̵ goes to 0 (I’ve
hidden h̵ everywhere) gives me back the scattering diagram.

The solution looks like it’s on each ray, but I need to remove a small disk around

the origin. Then I get ψ → φ0 + φ1 +∑ δai,h̵fai +O(h̵
1
2 ). That’s basically what I

wanted to say.

4. November 23: Carlos Shahbazi Alonso: On the mathematical
formulation of four-dimensional supergravity and its

supersymmetric solutions I

I’ll be talking about supergravities. In contrast to quantum field theory, they
admit a rigorous mathematical formulation. They can be explained in terms of
differential, algebraic, and spin geometry.

Why are we interested in supergravity? They include general relativity and low
energy string theory.

I’ll focus on four-dimensional supergravities. Time permitting I’ll talk about ten
dimensions as well.

Let me explain the basics a little bit, of 4-dimensional supergravity.
For me it’s formulated in a 4-dimensional Lorentzian manifold (M4, g). Physi-

cally it is supposed to describe gravity. I need to be able to define spinors on the
manifold. I will assume, although it is not strictly speaking necessary, that M4 is
oriented and spin. Let us denote by Cl(M,g) the Clifford bundle over (M,g). For
those of you who don’t know it, the typical fiber is the Clifford algebra at that
point, Cl(M,g)∣p is the Clifford algebra of the vector space (TpM,gp). Given a
finite dimensional vector space with a quadratic form (V, q), the Clifford algebra
Cl(V, q) is the unital associative algebra generated by V subject to the condition
that v2 = q(v) for all v in V . So T (V )/I(V ) where I(V ) is generated by v ⋅v−q(v).

Once we’ve constructed this bundle, we can try to associate to it a bundle S of
Clifford modules over Cl(M,g). There is an obstruction to constructing S.

Riemannian and Lorentzian signatures are different. The obstruction for a com-
pact manifold to admit a Lorentzian metric is Euler characteristic, it has to be
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0. If you’re interested in Ricci flat or Einstein metrics, you have an elliptic set of
differential equations, whereas in Lorentzian metrics they are hyperbolic. Moduli
spaces are not usually well-defined in Lorentzian situations. Often situations in su-
pergravity, trying to find solutions is related to a question in Riemannian geometry
about an associated manifold.

Now the bundle of Clifford algebras, we want a bundle of irreducible representa-
tions of our Clifford algebras. This depends on the dimension and signature. The
standard way to proceed is to assume the manifold is oriented and spin, so that the
first two Stiefel–Whitney classes w1 and w2 are zero. Then we can make Clifford
modules. This is sufficient but not necessary.

By spin I mean you can lift your structure group from SO(1,3) or SO(4) to
Spin(4).

Now I’ll focus on four dimensions, So Cl(1,3) is the Clifford algebra of R4 with
the Minkowski metric η. This guy here is is isomorphic as a unital associative
algebra to M4(R), a matrix algebra. This is not signature-independent. We can
define a subalgebra of our Clifford algebra, the even part of the Clifford algebra Cl0,
which is generated by an even number of products. It’s clear that it’s a subalgebra
of this guy. What do they have to do with the spinors? Well, the following holds.
The spin group Spin(d) ⊂ Cl0(V, q) ⊂ Cl(V, q), so by restricting to the even part
we get representations of the spin group. Irreducible representations of the even
part stay irreducible when restricted to the spin group.

In our simplified setup, we’ll want representations of the spin group, which are
Fermions, so relevant for describing fundamental particles. In our case, this M4(R)
has a unique irreducible representation on R4, which stays irreducible as a rep-
resentation of the even part, and then remains irreducible on Spin(1,3). This is
what physicists call Majorana spin. This is important in supergravity. You have
all these fields, tensor products of spinors and tensors, which are invariant under
the infinitesimal transformations generated by a spinor. So the Lie derivative of a
vector field acts on tensors. So we’ll have something similar, generated by a spinor.
Depending on the situation, how many spinors we have, we’ll have different super-
gravities, you can have 1, . . . ,8 (but not 7) spinors. The N = 1 is invariant under
1 supersymmetries and for N = 8 you get something invariant under 8 different
spinors. We’ll be concerned mainly with N = 1 and N = 2. The more supersymme-
tries you have, the more constrained the theory is. For N > 4, the theory is unique,
there is only one supergravity. For N = 3 and N = 4 there is a discrete (infinite)
set, say Z, of supergravity. For N = 1 and N = 2, the moduli space of supergravities
is not known but is an interesting problem. We will see it can be phrased very
rigorously.

Once we know this, physicists don’t always like to work with Majorana spinors,
sometimes they prefer complex spinors. We can complexify the Clifford algebra we
just used, and then we get a Clifford algebra over the complexes Cℓ4, which splits,
and you can define, if you complexify, there are two representations of the even
part Cℓ04, call them the + and − chirality representations of the even part of the
Clifford algebra, which induce complex representations of the spin group, so-called
Weyl spinors.

These generate the transformations that leave invariant the theory we want to
consider.
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Let me give you an example, a Lorentzian manifold with a bundle of Clifford
modules, and the sections of the corresponding bundle are what physicists call
spinors, which generate transformations, and our theory must be invariant under
these transformations.

The actual calculations were done in the 70s and 80s and are very messy. I won’t
review them, they’re not very conceptually interesting, but we’ll pick up the results.

The supergravity action, someone did the calculation, writing the supergravity
action is difficult because it’s very long. People usually truncate to the Bosonic
part of the action, which doesn’t depend on the spinors. Looking for macroscopic
solutions people only care about the Bosons.

S = ∫
M
ω{R +Gij∂rϕi∂µϕγ + 2INΛΣ⟨FΛ, FΣ⟩ − 2RNΛΣ⟨FΛ,∗FΣ⟩ + V }

The R is the curvature of the metric. The Gij∂rϕ
i∂µϕγ is a nonlinear sigma model.

Let me explain a little. We assume we have a mapM4
ϕÐ→ (M,G), to a Riemannian

manifold, and the ϕ are expressions of this map. So ∣∣dϕ∣∣2 is the global form of
this guy. Let me tell you whatM has to be. It follows from supersymmetry. For
N = 1, (M,G) must be a Kähler–Hodge manifold. For N = 2 this is a product,
a Riemannian product, of a special Kähler manifold and a quanternionic Kähler
manifold. For N > 2, (M,G) must be a symmetric space. For N = 8, this is
interesting at a quantum level, this (M,G) is E7(7) over SU(8), the maximally
[unintelligible]form of the exceptional Lie group E(7). So supersymmetry highly
restricts the theory already. In the N = 8 case it’s unique.

Now you can see why the moduli space is not solved, it would involve classifying
all Kähler–Hodge manifolds. The goal of this lecture is to do the N = 2 case in
[unintelligible]full generality.

So FΛ ∶ Λ ∶ 0, . . . , n and [unintelligible]are curvatures of U(1) bundles. N is
a matrix whose entries depend on ϕ. We call ϕ the scalars. You pull back the
connection, compute the curvature, and pull the curvature back to the base to get
a 2-form on the base. You take the pullback ϕ∗(FΛ) and ϕ∗(FΣ), so

⟨FΛ, FΣ⟩ = ∫
M
ϵ⟨ϕ∗(FΛ), ϕ∗(FΣ)⟩M .

Now you need the equations of motion coming from the action. This is very different
from having a Ricci flat metric. Usually you are not interested in the [unintelligi-
ble]here. Using supersymmetry, the problem of finding solutions to this system of
equations can be addressed.

Let me give you an example of supersymmetry calculations. As Calin said, there
is an object called the gravitino, a section, a 1-form tensor a spinor, ψ. As I said we
will be interested only in the bosonic sector, all the things that contain the spinors
we’ll truncate to 0, then the supersymmetric transformation of ψ, I’ll write δϵ, in
the N = 1 case, the simplest one, is just Dϵ. Now D is a connection on the spinor
bundle, Γ(S) → Ω1(M)⊗ Γ(S). This is an infinitesimal transformation of gravity.
We have to work more to see D. In the N = 1 case, as we said, the manifold was
Kähler–Hodge, so there’ is a holomorphic line bundle over it. We have this map

M4
ϕÐ→M, a differentiable map.

So we can pull back this bundle L to ϕ∗L. Our spinor will be a section of the
spinor bundle times this bundle, it’s not exactly this line bundle but so far, for our
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purposes it’s enough to say this. I can give you the details if you want. I want to
focus on a trivial case. To this holomorphic line bundle you can associate a U(1),
the pullback of the U(1) bundle is what you need here. Let’s take the case where
M is a point, then L is trivial and we can use the trivial connection. If we use the
trivial connection and the bundle is trivial, then the spinor (people say in this case
there are no scalars) is a section of the spinor bundle ϵ ∈ Γ(S), and this becomes the
standard spin connection δϵΨ = ∇ϵ, the standard lift of the Levi–Civita connection.

Supersymmetric solutions have to be invariant so they satisfy ∇Sϵ = 0. We’re in a
well-defined mathematical setup. We need to worry about 4-dimensional manifolds
equipped with parallel transport. There’s a theorem about this. In particular,
the holonomy of the connection is in the stabilizer Stab(ϵ). As I was pointing out
at the beginning, Lorentzian and Riemannian geometry is different. Classification
of things like this was only started in the 1990s for the Lorentzian case. If your
holonomy acts reducibly in the Riemannian case, then your manifold is a product.
That’s not true, it’s much more complicated.

Anyway, there’s a theorem and then we can finish here.

Theorem 4.1. Let (M,g) be a complete simply connected Lorentzian manifold of
dimension d = n + 2 admitting a parallel spinor ∇Sϵ = 0. Then the following holds.
Either

(1) (M,g) is isometric to (R−dt2)×(M1, g1), where M1 is a Riemannian man-
ifold with special holonomy, admitting a parallel spin itself. But then a lot
is known. It should be Ricci flat of special holonomy and then you have the
Berger list. This is three dimensional for us. There is no irreducible three-
manifold with special holonomy, not generic. So in the four dimensional
case this is flat space. This is a pretty strong result.

(2) the holonomy group is contained in SO(n)⋉Rn, and the projection to SO(n)
is one of the groups allowed in special holonomy, in Berger’s list, G2, Spin7,
so on.

Let me summarize. I’ll tell you who is the author of the theorem tomorrow. We
started with a complicated scalar maniflod, we can truncate and do a simple case.
In this simple case the gravitino superconnection reduced to ∇Sϵ. This should be
invariant which makes it 0. Then the geometry of the manifold is highly constrained
as shown in the theorem. I didn’t say how this was related to solving the equation,
but I’ll talk about this tomorrow. But you see there is something that you can say.
The goal is to solve the differential equations that define the theory.

5. November 24: Carlos Shahbazi Alonso: On the mathematical
formulation of four-dimensional supergravity and its

supersymmetric solutions II

So I prepared for today, I hope it’s something a little clearer than yesterday. To-
day we will focus on a particular supergravity. Let me make some general remarks.

Let me start with some references for what I said yesterday. The last theorem, the
classification of spin or Spinc Lorentmanifolds, I’ll give one name, Aziz Ikemakhen.
For general supergravity, you can check Gravity and Strings by Tomás Ortin and
Supergravity, by Freedman and van Proeyen. These are books for physicists, you
won’t have rigor. There may be errors but not in the physics. You can see here
the formalism to build the Lagrangians. They developed in the 80s a formalism to
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find these Lagrangians. Some chapters are not so easy, they’re quite technical. The
first book is more conceptual, I’d say.

So in this one hour lecture, we will focus on N = 1 supergravity. I’ve been talking
about “theories” but maybe I should say what a theory is. For me here, this misses
many physical details, but a theory is a set of PDEs on an open set in Rn involving
a metric, curvature of a bundle, and other similar things. This is very restrictive. In
Riemannian geometry one is used to working with a given manifold (M,g), if it is
complex, you can study the moduli space of complex structures or something, but
the manifold is given, an underlying fixed differentiable manifold. In Lorentzian
geometry, more importantly for physics, this is not the case, you don’t know your
underlying manifold. Consider the case where the unknown is the metric. This
is general relativity. The vacuum equations, when there is no matter, the set of
PDEs says that Ric(∇LC) = 0. Now you could say, fix a manifold and study the
Ricci flat metrics. The way to proceed is to solve these equations on an open set
in Rn. Then when you know the local form of the metric, you need to find what
is the manifold, globally defined, that has this metric. This is called obtaining the
analytic extension.

[discussion of analytic extension vis à vis Riemannian completion]
I thought, I hope I’m not wrong, I thought I’d copy the equations explicitly so

you can see how easy to understand or not they are. It’s easier to do this in local
coordinates. Let (M,g) be our Lorentzian manifold. Let U ⊂ M be an open set
with coordinates xµ for µ = 0, . . . , d − 1. Given a tensor, for example a 1-form, I’ll
write ξ( ∂

∂xµ ) as ξ(∂µ) = ξµ. Then we can write the PDEs locally on U in a nice
way.

Qµν −
1

2
gµνR + 2Gij̄(z)∂µzi∂µz̄j̄ − gµνGij∂ρzi∂ρz̄j̄ − 4INΛΣF

Λ
µ
+ρFΣ−

ij

The nonlinear sigma model ∫M Gij̄∂µz
i∂µz̄j̄ and then the effective potential ∫ ωV (z),

and then the curvature, let’s forget that. Let’s explore the nonlinear σ model. If

you remember there was a map M
ϕÐ→ (M,G), where M was a Riemannian man-

ifold. Given this map to a Riemannian manifold, you can take U ⊂M and µ ⊂M
such that ϕ(U) ⊂ µ, and the first thing that supersymmetry tells us, take this for
granted, is that inside µ you have local complex coordinates zi. Then the local form
of ϕ evaluated in u is zi(xµ), this is a map, locally, I compose with the coordinates.
This is to explain what was upstairs.

Now another thing that supersymmetry tells us is that the metric G locally on
µ is given ∂∂̄K where K is in C∞(U). Then it tells me that the effective potential

V , a function on the manifold, is locally writen as eK(DWDW −WW̄ ) where W is
a holomorphic function in µ where DW = ∂W + ∂KW . In order to have a globally
consistent picture, we need to see what happens to these guys in an overlap between
the two steps.

Supersymmetry tells us that on the overlap, we have Ka = Kb + fab + f̄ab where
fab is holomorphic in Uab. We have Wa = e−fabWb.

Then one can say that DWa = e−fabDWb. Pretty standard, right? Given this
data, one can construct a holomorphic line bundle onM, L, as {M,{µa}, e−fab ,C}.

Now we define on this holomorphic line bundle a holomorphic metric,H ∣Ua = eKa ,
using the holomorphic local section Wa. With this definition one can see that the
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associated Chern connection acting on W is locally in Ua given by ∂Wa + ∂KaW .
This is clear, right?

I’ll show you that c1(L) = [ω], the Chern class is the Kahler form.
If you want Wa to be invariant, you have to use this transformation rule, I don’t

know how you do this.
If you define the metric H, then V globally is H(DW,DW ) −H(W,W ).
After identifying this, one can easily see that iFH = ω. Rescaling this one deduces

that c1(L) = [ω]. This implies thatM is Kähler–Hodge.
The standard choice is the upper-half plane. If you specify (M,G) andW , along

with the matrix N , (and gauge) then the theory is completely fixed. You don’t need
to explicitly write the equations of the Lagrangian.

[degenerated discussion]
So you can reduce the structure group to U(1), doing this you can get a bundle

L̃ overM and pull it back to ϕ∗L̃ overM , the same as a choice of Hermitian metric.
You need a family of these, choosing transition functions gab, and take eqiIfab and
get a family of U(1) bundles. q is an integer. In principle you need something more

general, e−q1fab−q2f̄ab .
Now I want to write the supersymmetric transformations which I wrote yes-

terday but didn’t explain. There is a spinor ϵ in Γ(S+C), this is a generator of

supersymmetry in general, but we need to tensor with Γ(ϕ∗L̃ 1
2 ,−

1
2 ). This is the

supersymmetry spinor. Now the supersymmetry transformation, the thing that
should be zero to have a solution, is Dϵ, where D is the spin connection on the
spinor complex bundle and the pullback of the connection on the second factor. The
L̃ have a connection from the Chern connection and then you can pull it back. This
Dϵ = 0 is the Killing spinor equation of the gravitino, which means that δϵψ = Dϵ.
This is what we said yesterday that one could use it to classify at least part of the
supersymmetric solutions of the theory.

6. December 10: Matt Young: A mathematical approach to BPS
state counting in orientifold string theory

Thank you for the chance to speak here. I want to talk about ongoing work to
understand counting BPS states in the context of orientifolds.

For the first part of the talk I’ll talk about why mathematicians might care about
orientifolding. I’ll also try to put it into a precise mathematical framework.

Some motivation. Let’s start with a well-known caricature. Given an oriented
string theory, of type IIA or IIB are the most familiar examples, this is a theory
of maps ϕ from oriented surfaces with boundary into some space X which I’m
happy to think of as a Calabi–Yau three-fold for this talk. This is a physics theory
that we can’t define, but it’s a physics theory which predicts we should look at
B, the category of D-branes. Some familiar examples are the Fukaya category
of X, the derived category of coherent sheaves on X, or the derived category of
representations of a quiver, matrix factorizations, et cetera. Once we have passed
to the categorical setting, we can ask the following question. From the physics
point of view you’re interested in counting BPS D-branes. From the mathematical
point of view we want to count stable objects of B with respect to some Bridgeland
stability condition.

This is the kind of familiar story you get from oriented string theory. I want to
talk about something slightly different. There’s a procedure called orientifolding, a
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physical procedure that starts from an oriented string theory to produce a theory of
maps of unoriented surfaces. This is a theory of maps of non necessarily orientable
surfaces with boundary into X. In order to define this theory, we need some extra
data σ on X. So now we’ll start from the oriented string theory and try to replace
things in our sketchy diagram. We can still get a category B of D-branes, the
same D-brane category, and the extra data we get, I’ll call orientifold data. It’s a
lowbrow piece of data. We get a contravariant functor S ∶ Bop → B and secondly
a way to identify θ ∶ 1B → S ○ S. This stability problem becomes the problem of
counting stable self-dual objects of (B,S, θ), which I have to define.

Definition 6.1. A self-dual object is a pair N ∈ B and ψN ∶ N
∼Ð→ S(N) such that

S(ψN) ○ θN = ψN . So this is some kind of transpose.

In some of these examples, what is this extra data? Suppose we start with
B as the Fukaya category. We need to fix σ ∶ X → X, which is an antisymplectic
involution, a smooth diffeomorphism which squares to the identity so that σ∗ω = −ω.
What are objects of the Fukaya category? They are pairs consisting of a unitary
local system E on a Lagrangian L of X, and the functor S takes the pair to the
pullback σ∗E∨ → σ(L), where σ(L) is again a Lagrangian. The morphisms are
roughly Floer cohomology groups, and because this is an anti-involution, it changes
the direction of the cohomology, so it’s contravariant.

The main type of examples will be the derived category of coherent sheaves or
the local version.

What about when B is Db(X)? Then we can take S = RHom( ,OX), the
derived dual. Then θ = sev where ev is the isomorphism of a finite dimensional
vector space with its double dual and s is ±1, which is σ in this case.

What are the self dual objects? If N is a vector bundle, then ψ ∶ N → N∨ should
be an isomorphism so that ψ∨N = sψN . We have tensor products here, this is the
same as a nondegenerate bilinear form on N which is symmetric or nonsymmetric
(depending on s). So this is the same as an orthongonal (s = 1) or symplectic
(s = −1) vector bundle.

The usual problem of counting stable objects is counting vector bundles, but now
you’re counting slightly different objects that wouldn’t fit in that basic framework.

One subcase of this problem is, can we get some handle on the moduli of whatever
these bundles are.

This is the motivation. Today I’m going to focus, maybe I should write here,
what is, what are the counting theories? For the Fukaya case, this is work of Joyce,
counting special Lagrangians. The second to cases this is work of Kontsevich–
Soibelman and Joyce–Song. The matrix factorization case is work of Toda, rela-
tively basic compared to the others. The counting theories on the orientifold side,
there’s no work in any of the cases.

I want to focus on the middle example, which is Donaldson–Thomas theory, so
Db(X) or Db(Rep Q), I want to explain the standard story first.

It’s useful to recall the original example. This is Thomas in 1998. Suppose
you are given X a smooth projective Calabi–Yau three-fold. You want to study
the moduli space of sheaves on X. You can define Mst

d , which is the moduli of
stable (with respect to some polarization) sheaves on X with fixed characteristic
numbers (which I’ll just call d). This is a perfectly good moduli space. To do
counting theory you need control on the geometry of this space. If there are no
strictly semistable sheaves, you can think roughly that strictly semistable sheaves
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come from points that have too many automorphisms, so if there are none, then
Mst

d is a (singular) projective scheme with (due to the Calabi–Yau condition on
X) a symmetric perfect obstruction theory, and so we can define an integer DTd to
be the degree of the class [Mst

d ]vir ∈ Z. So we can define this virtual fundamental
class, and this sits in degree zero, we can just count this and get the stable sheaves.

The main problem with this is that usually there are many strictly semistable
sheaves. We can look at the moduli space of semistable sheaves, and this is a stack,
not projective, with no virtual fundamental class. The second, well, not problem,
but we may want more. This defined an integer that knows about the space but
maybe we want more, a Poincaré polynomial or something like this, more refined
information about this moduli space.

This is not so much a problem but we’re greedy so we want more. So Kontsevich–
Soibelman and Joyce–Song have different programs to address these issues. These
programs are most well-founded in the case of quiver representations forDb(Rep Q).
To do it for coherent sheaves, there are conjectures to relate them, but in the quiver
case everything is well-established.

So I want to talk about the Kontsevich–Soibelman approach. Let’s let Q be a
quiver, just an oriented graph, maybe multigraph, so you can have multiple arrows
between each node, and a representation of Q is a complex vector space for each
node and a map for each arrow. So for this quiver [picture] you get Ui and Uj
and then maps uα ∶ Ui → Uj and uβ ∶ Uj → Uj , where Ui and Uj are Cdi and Cdj
respectively. I’ll stick to the node with m ≥ 0 loops. So this will be a vector space
with m endomorphisms. Let’s call Rd the space of all tuples of all d × d matrices,
and you have an action of the group GLd which acts by automorphisms on this
space. So this is the same as n-tuples of matrices up to simultaneous conjugation.

So we have an Abelian category of representations Rep Q. This is the main
category we’ll be interested in. We want to form a moduli problem, so what are the
moduli spaces we’re interested in? There are two. I’m interested in Md, a stack,
which is [Rd/GLd]. We have a map from the stack to its coarse moduli space, the
GIT quotientMd, which is SpecC[Rd]GLd , this is a varienty but horribly singular,
and sitting inside, open, we have a smooth but non-projective varietyMst

d . These
are the three moduli spaces I’m interested in.

Much of what I’ll say will work for moduli problems in Abelian categories, and
this should be basically the same as studying Bridgeland stability.

What is the basic geometry of these moduli? The first is that this spaceMd is
not really a moduli space. SoMd parameterizes closed orbits of GLd on Rd, we’d
really like to parameterize actual isomorphism classes but there’s a lot of collapsing
that happens here. More precisely, U has a filtration 0 = U0 ⊂ ⋯ ⊂ Uℓ such that
Ui/Ui−1 is stable (no nontrivial subrepresentations). This means the n matrices
have no common eigenvector. This is the Jordan Holder filtration, any object has
a stable filtration like this. Then U and ⊕Ui/Ui−1 are identified inMd. So we lose
all the information about the extensions.

On the other hand,Mst
d really parameterizes isomorphism classes of stable rep-

resentations. This is a very good moduli space. This filtration gives us a very useful
heuristic. This lets us build the singular moduli space from the stable one. I wnat
M = ⊔Md andMst = ⊔Mst

d and we have an identificationM = Sym(Mst). Then
the whole moduli space is built from the stable locus. This is not even close to
true as varieties. You can get closer from a constructible stratification but that’s
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not close enough. We’d like to use this set identification and lift it to the level of
varieties, and this is what Kontsevich–Soibelman give a recipe to do.

We can make this precise via the Hall algebra. We have an Abelian category, we
can talk about short exact sequences, and we should think if we have 0→ U → V →
W → 0, then V is built out of U and W . If I form V as an extension it will never
be stable. Anything that we multiply and get as a product will never be stable so
we won’t be interested in it.

So how do you make this statement more precise? You consider the correspon-
dence Md,d′ which maps to Md ×Md′ and Md+d′ , where Md,d′ is the stack of short
exact sequences where U has dimension d and W has dimension d′. Then the
projections are the maps to (U,W ) and to V . Then let HQ be ⊕H∗(Md) which
is ⊕H∗GLd

(Rd). Then we can define an algebra on HQ using the correspondence
diagram. The map Hd ⊗Hd′ → Hd+d′ is then (p2)! ○ p∗1 and it makes HQ into an
associative Λ+Q ×Z-graded algebra. Here ΛQ are the dimension vectors and Z is the
cohomological grading. This gives a precise way of smashing together and getting
a bigger representation.

This is the Hall algebra. If Q is symmetric (it has the same number of arrows
going in each direction) then the algebra HQ is supercommutative with Z2-grading
coming from the Z-grading. So odd elements are those with odd cohomological
degree. This is a supercommutative algebra graded by the big lattice.

Now we can make geometric the bijection.

Theorem 6.1. (Efimov, 2012ish) There exists a Λ+Q×Z-graded vector space V prim =
⊕V primd,k with the properties

(1) Integrality: V primd is finite dimensional, where this is the sum over all k.

(2) The Hall algebra is the free supercommutative algebra on (V prim ⊗ Q[u])
where u is in degree (0,2).

What does this theorem mean? Once we fix d, it’s got the cohomology of a
finite dimensional variety. We could hope that V primd looks like H∗(Mst

d . The
second point makes precise the statement M = Sym(Mst) at the level of stacks,
M = LdMd ∼ Sym(Mst/C×), this is actually correct once we take cohomology. The
cohomology on the left is the Hall algebra. On the right this is V prim ⊗Q[u].

This is how we think of the theorem in the first heuristic.

Definition 6.2. (1) V prim is the cohomological Donaldson–Thomas invariant

(2) Ωd,k = dimV primd,k is the motivic Donaldson–Thomas invariant.

(3) χ(V primd ) is the usual Donaldson–Thomas invariant

Unfortunately the first thing V Primd ≁H∗(Mst
d ) is not quite true.

Theorem 6.2. (Chen) V primd ≅ PH∗(Mst
d ), the pure parts in the mixed Hodge

structure.

I want to give you two examples that show that things are computable. You
have no chance for computing the Hodge structure directly, but using the Hall
algebra you can. So for my loop quiver, HQ = ⊕H∗GLd

(glevmd = ⊕H∗(BGLd) =
⊕Q[x1, . . . xd]Sd . Then linearly this doesn’t know about the number of loops but

the product does. f1f2 = ∑π∈Shd,d′
π(f1f2∏di=1∏

d′

j=1(x′ix′′j )m−1).
Let’s start with m = 0. Then you can calculate directly that the Hall algebra

is ⋀∗[x0, x1, . . .], which come from the d = 1 term. These are the vector space
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generators, and xi are all independent algebraic generators. This si the same as
Qodd ⊗ Q[u]. If we have a one-dimensional vector space, it’s stable, so Mst

d is a
point for d = 1, and empty for d > 1. So this has cohomology Q in degree 1, and
that’s the same Q. The algebra is still interesting, it’s really a point mod C∗.

If I take m = 1 I get Q[x0, x1, . . .], which is Qeven ⊗Q[u]. What’s the geometric
point of view? Mst

d , a one-dimensional vector space is a vector space with an
endomorphism, so I have C in degree 1 and again it’s empty in d ≥ 2.

For m = 2 you have infinitely many d for which you have nonempty stable moduli
spaces.

After the break I’ll explain how to modify this in the orientifold setting.
In the second half I’ll explain my work. It will be shorter now that we have

the right framework. I want to make one comment I forgot. The second part of
Efimov’s theorem, one corollary is the following, V prim is determined by Ωd,k, let’s

go down one level and compute the Poincaré series, AQ = ∑d,k dimHd,k(−q
1
2 )ktd.

We know as a vector space this is symmetric polynomials, we can get an expression
in that way. We also know it’s a supercommutative algebra, and it’s also easy to
compute the series. So AQ is basically known, we can write it in terms of something

so it only depends on Ωd,k. So Ωd = ∑Ωd,kq
k
2 a priori is rational in q

1
2 and this

theorem shows it’s actually polynomial in q.
Now I want to move to the orientifold setting. We’ll put an involution on the

category and identify the double. So I have (U,u) and the involution will go to
(Uv,±uv). I take θ to be ±ev. I can choose all the signs independently (even for
individual matrices in u). So this was gl⊕md /GLd so we can get to sp⊕md /SPd, if we
do − and −. If we do + and − then we get (⋀2 Cd)⊕m/Spd, and if we change the
second sign we get orthogonal rather than symplectic versions.

In the orientifold setting, only the Kontsevich–Soibelman approach will work.
You can never do the naive thing with virtual fundamental classes because you
always have strictly semistable things.

So e will always be a dimension vector for a self-dual guy, so you have Mσ
e →

Mσ
e →Mσ,st

e which is no longer smooth, but is now an orbifold.
Now let’s try to play the same heuristic game, decompose the moduli space in

the middle in terms of the stable guys again. Let’s look at some basic facts about
the GIT quotient. This will again be closed orbits of these groups acting on the
space.

(1) A self-dual representation N is σ-stable if it has no nontrivial isotropic sub-
representations. Isotropic subrepresentations are subrepresentations whose
underlying space is isotropic. The other moduli space Mσ,st

e is good, it
parameterizes stable objects.

(2) Every self dual representation has an isotropic filtration 0 = U0 ⊂ ⋯ ⊂ Uℓ ⊂ N
so that subquotients Ui/Ui−1 is stable and the final guy N//Uℓ = U⊥ℓ /Uℓ is
either 0 or σ-stable. This is the analogue of the Jordan–Hölder filtration
for groups other than GLn.

Also, N and ⊕H(Ui/Ui−1)⊕N//Uℓ are identified inMσ
e , where H(V ) =

V ⊕ S(V ). So again, there’s a huge amount of collapsing going on here.

Then as sets, we can modify our prediction,Mσ, let’s look at its stratification, we
have a doubled bunch of usual stable moduli spaces, and then get one extra factor
which is σ-stable. So this will be H(SymMst/Z2)×Mσ,st, where we factor out Z/2
because the symmetric thing of V and SV are the same.
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So a problem is that, we don’t have an Abelian structure on self-dual objects,
because they’d be automatically split. Then the key idea, we can look at the short

exact sequences 0 → U
isotropicÐÐÐÐÐ→ N → P → 0 where P ≅ N//U . We’ll never get an

algebra, but we get an ordinary guy, a self-dual guy, smash them together and get
a self-dual guy. So we look at stacks Mσ

d,e where we get projections Md ×Mσ
e and

to Mσ
2d+e.

Now the theorem is kind of obvious

Theorem 6.3. (Y.) MQ = ⊕H∗(Mσ
e ) is an HQ-module. It’s a Λσ+Q × Z-graded

supermodule

We know from the Hall algebra setting, we wanted to study the generators for
the algebra, now we want the generators for the module, which should tell us about
the geometry of the stable moduli space. If we look at the short exact sequence,
the action will never be stable, we always have an isotropic subobject. We only
want things that can’t be obtained from this.

Theorem 6.4. (Y.)(Integrality for orientifolds) Let W prim = ⊕W prim
e,ℓ be a space

of minimal generators as a module. Then dim W prim
e is finite dimensional.

Just proceeding by analogy with Efimov’s theorem, the guess or hope is that this
is the pure part of the cohomology of the stable space. Unfortunately I don’t know
how to prove this in general.

Theorem 6.5. There is a canonical surjection V primd → PH∗(Mσ,st
e ).

If this were an isomorphism, there would be a strong similarity to the other case.
This is an orbifold, so there’s more difficulty, but you can do surjectivity. In-

jectivity in the usual case uses Nakajima quiver varieties that just don’t exist for
general linear groups. The conjecture is that this guy is an isomorphism.

Let’s look at an example. There’s a combinatorial version of this module. Let’s
look at m = 0, and look at the point modulo the symplectic group. In this case,
the module MQ is generated by, well, first let me say, as a vector space MQ =
⊕HSpe() = ⊕H∗(BSpe) which is symmetric polynomials in the squares of the
variables Q[z21 , . . . z2e]Se . The invariants should only have squares because the Weyl
group changes the sign. Then the module is generated by a single element, the
constant function of zero variables, and is free over the subalgebra HoddQ (this was

an infinitely generated Clifford algebra).
Again, what’s the geometry? Mσst

e is empty if the dimension is at least 2 and
is a point if the dimension is 0. You need a point to generate anything. There’s no
higher stable moduli spaces, and that corresponds to the module being generated
by this single guy in dimension 0.

Now what about the case when m = 1? Take the representations that are sym-
metric squares of Cd/Od. The module is generated by 10,11, . . ., the constant func-
tion in different degrees. It’s infinitely generated, and is free over the subalgebra
HoddQ = Q[x1, x3, . . .]. What’s happening here? The stable moduli space Mσ,st

e is
an orthogonal space with a symmetric map. In dimension 1, we get a copy of C. In
higher dimensions, the stable representations are diagonal matrices with no com-
mon eigenvalues, which is SymeC/∆big. These are relatively complicated. Can we
compute the pure part of the cohomology of this guy? It’s Q in degree 0. There’s
only the one pure part. We get a one dimensional generator in each degree. So
you’ll never get the whole cohomology, but it sees all of, uh.
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I have ten more minutes? These examples already show that the freeness part
of Efimov’s theorem is more complicated. Briefly, what’s the analogue of freeness?
This really differentiates the normal from the orientifold setting. It’s not enough to
go to the motivic one, we need the full cohomological one. The functor S defines
an involution of our algebra HQ. At the level of stacks it’s dualizing, and then you
induce that map on cohomology. This descends to an involution of the primitive
space V prim. This is not entirely trivial, because this is not a canonically defined
space.

Proposition 6.1. If f ∈Hd and g ∈Me, then f ⋆g = (−1)ϵ(e,d)S(f)⋆g. Here ϵ we
have an explicit formula for.

So f − (−1)ϵ(e,d)S(f) annihilates g. This gives us something we need to kill. For
example, if f = S(f), then this gives us some sign condition about whether f can act

nontrivially. Let V (e) be the subspace of V prim⊗Q[u] spanned by f−(−1)ϵ(e,d)S(f)
for f ∈ V prim ⊗ Q[u]. Now let HQ(e) be the free supercommutative algebra on
V prim ⊗Q[u]/V (e).

Conjecture 6.1. (1) Let g ∈ W prim
e . Then Hq ⋆ g is free of rank one over

HQ(e).
(2) MQ =⊕gHQ ⋆ g where g ranges over a basis of W prim

e .

This again is telling you, how did we define this module? We really needed to
know V prim with its module structure over Z2.

To finish,

Theorem 6.6. The conjectures hold for the cases L0, the zero loop quiver, L1, the
quiver with two arrows, and for Dynkin quivers. Beyond that, you can check for L2

in low degrees.

As a last comment, we ended the last lecture arguing that you could look at the
Poincaré series, but the conjecture tells you that you can’t hope to do this in the
orientifold case. You really need to take the Hall algebra seriously, there seems to
be no direct way around this problem.

7. Jongil Park: On symplectic fillings of quotient surface
singularities

I’m not sure how far I can cover in my talk. Last time, as I told you, Lisca
classified symplectic and Stein fillings up to diffeomorphisms (orientation preserv-
ing). As I told you, he conjectured a one-to-one correspondence between Milnor
fibers and minimal symplectic fillings. In the first hour of this talk, I’ll cover how
he proved, classified, and review how [unintelligible]classified fillings for the non-
[unintelligible]case. At the end I’ll review how we can show how these are Milnor
fibers. In the second half I’ll review Milnor fibers and partial resolutions and so on.

For Lisca’s result, he parameterized the fillings by, well, let L(n, a) be cyclic quo-
tient singularities of type 1

n
(1, a). So n and a are relatively prime so n

a
= [b1, . . . , br],

and the counterpart is n
n−a = [a1, . . . ae], the continued fraction expansion. The two

numbers are closely related. For example, b1, . . . , br,1, ae, . . . a1] = 0.
[some discussion]
If we fix n and a then Ke( n

n−a) is the e-tuple of integers where [n1, . . . ne] is zero
and 0 < ni ≤ ai where ai is the continued fraction of n

n−a . This parameterizes the
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minimal symplectic fillings. I review the construction because when you consider
the non-[unintelligible]case, it’s the same idea.

Then he constructed Wn,a which is a symplectic filling of L(n, a). For each
n = (n1, . . . , ne) in Ke( n

n−a), well, how can you construct this one. You blow up at
p consecutively [pictures].

In summary we have a rational surface Z which is CP2#N C̄P2 and inside we
have this configuration (picture).

Theorem 7.1. (Lisca) Suppose (W,ω) is a minimal symplectic filling of (L(n, a), ξL).
Then there is an M > 0 such that W ≅ CP2#M C̄P2/DΓ where DΓ = C1 ∪⋯∪Ce of
type (1,1 − a1,−a2, . . . ,−ae).

That’s the first part (it’s not difficult). The key part is how to match the exact,
what kind of Wn,a?

[too many pictures]


