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[Missed the beginning]

S = ∫
M
⟨B∧, dEA⟩

for A ∈ Ω1(M,E) and B ∈ Ωn−2(M,E∗)
So I want to talk about a cellular model. We heard in the last talk, we can put

ghosts and antifields and so on, and then I should just move to

A ∈ Ω∗(M,E)[1],B ∈ Ω∗(M,E∗)[n − 2]
Now I will work on a cobordism M with a cellular decomposition X.

The space of fields is C∗(X,E)[1] ⊕C∗(X∨,E∗)[n − 2], so E is an O(m)-local
system, and the structure group can be relaxed to SL±(m), this is the most relaxed
version of coefficients for this model. So cochains, essentially, the data of the local
system is encoded in the differential on the space.

So fields are elements of this space. So

A = ∑
e∈X

Aee
∗

where e∗ is the index cochain, and Ae ∈ Rm, which has an internal degree (ghost
number) and

B = ∑
e∨∈X∨

Be∨(e∨)∗
So the ghost number of Ae is ∣Ae∣ = 1 − dim e and the ghost number of Be∨ is∣Be∨ ∣ = n − 2 − dim e∨.

The cell decomposition defines a ball complex, so the dual cell decomposition,
for every, this top picture corresponds to a closed circle. For every cell I have a
dual cell in complementary dimension. They have intersection number +1 if you
orient correctly.

For a manifold with boundary, there are some choices to make, for example
[pictures], so this decomposition X∨+ has too many cells, and this one X∨− has too
few. In X∨+ a cell e in the boundary has a dual cell κ(e) as before and alos one
of degree one lower κ∂(e). To define the dual for a cobordism we combine the two
constructions. We use the + construction at the in boundary and the − construction
at the out boundary.

One can do a pedantic definition but I just want to do some pictures. [pictures]
1
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Then the pairing of chains C∗(X,Xout)⊗Cn−∗(X∨, (X∨in))→ Z is non-degenerate.
Then at this level you have nondegenerate Poincaré–Lefschetz duality.

I spent some minutes talking about this because the correctness depends on the
definitions of the duals.

Then we have ω = ⟨δB, δA⟩. In terms of components, this is

∑
e∈X−Xout

⟨δBκ(e), δAe⟩
So this will be degenerate because some of the boundary terms won’t participate.
This has ghost number −1 and looks like a BV two-form but is degenerate.

The action

S = ⟨B,dA⟩X − ⟨B,A⟩Xin

where I’ll comment on the second term later.
Then the other part of the structure is the cohomlogical vector field (I’m sup-

pressing e throughout)

Q = ⟨dA, δ
δA
⟩ + ⟨dB, δ

δB
⟩

lifting dX + dX∨ to F .
Then

F∂ = C∗(X∂)[1] ⊕C∗(X∨∂ )[n − 2]
and this carries the one-form

α∂ = ⟨B, δA⟩out − ⟨δB,A⟩in.
There is some choice here, related to adding the boundary term before to the action,
outherwise I’d have to write ⟨B, δA⟩in. Then this satisfies

ω∂ = δα∂ = ⟨δB, δA⟩∂
and this α∂ is compatible with the polarization P = Span( ∂

∂Bout

, ∂
∂Ain

), so this is

the vertical distribution of F∂ pÐ→ B = C∗(Xout)[1]⊕C∗(Xin)[n−2], and I’d call an
element here (Aout,Bin) or (A,B) to keep with the notation of the previous talk.
This is the base of the Lagrangian fibration on our phase space. This F∂ takes the
restriction map π to the boundary from F.

If we’re given an element b in B it defines a Lagrangian subspace p−1({b}) and we
have in F the fields with a boundary condition Fb = π−1p−1({b}). Then restricting
here we get a nondegenerate 2-form which is what we need.

All of these for different b are affine translates of each other, so calling their
isomorphism class Y , we get F = B ⊕ Y and ω lives on Y via restriction to b.

Now we have the main equation

ιQω = δS + π∗α∂
and this is easy to check in the cellular case and follows from the “cellular Stokes
theorem”

which says that for cochains a and b on X and its dual, that

⟨db, a⟩X ± ⟨b, da⟩X = ⟨b, a⟩Xout
− ⟨b, a⟩Xin

One can calculate the Poisson bracket of S with itself. I can invert ω in the fiber
fixing a boundary condition and get

1

2
(S,S)ωb

= π∗S∂
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where S∂ is the action on the boundary phase space ⟨B,dA⟩∂ (there’s also the
definition for Q on the boundary which is exactly the same formula as in the bulk
but for cochains of the boundary).

Now let us go on to the quantization.

For M closed and X we have ∆(E i
h̵
Sµ

1

2 ) = 0 on F . I have µ
1

2 ∈ Dens
1

2 const(F)
defined as

∏
e∈X
(DAe) 1

2 (DBe∨) 1

2

Half densities can be identified with

DetC∗(X)/ ± 1.
I’d like to evaluate, what kind of integral I’ll calculate, pushforwards to zero modes,
the zero modes or residual fields are, in this case

Fres = zero Q

Q

and in this case that’s easy, it’s H∗(X)[1] ⊕H(X∨)[n − 2] and since homology is
independent, this is H∗(M)[1] ⊕H∗(M)[n − 2].

I want to split this space F as Fres⊕Y ′′ and choose a Lagrangian from a Hodge
decomposition L in Y ′′ and do my integral here.

So we define

Z = ∫
L
e

i
h̵
Sµ

1

2

and this is in C⊗Dens
1

2 Fres.

Note that Dens
1

2 F = Dens
1

2 Fres ⊗ Dens
1

2 Y ′′, and you can restrict from half
densities on Y ′′ to full densities on Lagrangians, that’s how it works in this kind

of geometry, so you restrict to Dens
1

2 Fres ⊗ Dens1L and then integrate out to

Dens
1

2 Fres.
Now we need to fix homological perturbation data, so a choice of representatives

i ∶H∗(X)→ C∗(X), a projection C∗(X)→H∗(X), and a homotopy K on C∗(X)
between the identity on C∗(X) and ip, and so you hae C∗(X) = i(H∗) ⊕ kerp and
inside that last factor is imK = L. This is an analogue of Lorentz gauge in physics.
When K is d∗∆−1 this is actually Lorentz fixing.

Then Z = τ(X,E)ζ, where τ(X,E) is the Reidemeister torsion, an element in
DetH∗/±1, and then we have a transport DetC∗(X)→ DetH∗(X), transport this
volume element (up to sign to avoid orientations), and this is a well-known invariant
of a space and a local system. But we have this annoying complex number ζ from
i and h̵ and stuff like that. The number ζ depends on X, while τ only depends
on the manifold. You can write ζ = ξH

ξC
, where ξH depends only on Betti numbers

of the manifold, while ξC is extensive, has to do with the cells of X. I want to
do a very baby version of renormalization, I’m not using the naive cellular density

for my partition function, rescaling µ
1

2 locally by a number depending only on the
dimension of the cell, and then the rescaled one will be topological.

This topological part is curious, it contains a phase. Let me call it Zres, then

Zres = τ(X,E)ξH
and the phase is of the form e

2πi
16
q and q is a linear combination of Betti numbers

that is not the Euler characteristic. So how do you get a phase modulo 16 where you
expect only integer products, I don’t know, square roots of i out of such an integral.
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It comes from the splitting into the topological and extensive part. The topological
part has a strange phase after you do that. The phase looks like the phase of the
Chern–Simons partition function, a little, and the mechanism is similar, it’s also
an eta invariant (of a much simpler Dirac operator). This never appeared in old
[unintelligible]theory because people never considered this kind of local system.

One point I should make is that if I have two cell decompositions ofM such that
X is a subdivision of X ′, then I get an aggregation, and I can do a BV pushforward
and

P∗(e i
h̵
SXµ

1

2

X) = e i
h̵
SX′µ

1

2

X′

So this is like a baby version of renormalization, jumping to subdivisions with
sparser cells.

Let me move now to the case with boundary, then my states H∂ is Dens
1

2 B, and
an element here is like ψ(A,B), where recall these are the restrictions of A and B
to out and in boundary, respectively. So then this is like

H∂ =H(B)Xin
⊗H(A)Xout

and then Ω is, let me remind you of the phase space F∂ with its Lagrangian fibration
over B, and this is projectible (true only for very simple theories) so QB = p∗Q∂ ,
and then

Ω = ih̵QB = −ih̵⟨dA, ∂
∂A
⟩out + ⟨dB, ∂

∂B
⟩in

and Fres is

H∗(X,Xout)[1] ⊕H∗(X∨,X∨in)[n − 2]
and I choose homological perturbation data for C∗(X,Xout) andH∗(X,Xout). Now
I get a well-defined extension (by zero) of A to the bulk and likewise for B. Then

A = Ã + a + α and B = B̃ + b + β, introducing fluctuations, with the (residual) zero
modes a and b, and we do some integrals and let me tell you the result, repeated
in some parts from the last talk.

Then

Z(A,B, a, b) = ∫
L⊂Ffluct

e
i
h̵
Sµ

1

2 ∈ C⊗Dens
1

2
B⊗Dens

1
2 Fres

so the first two terms are the space of fields, and the answer will be

ξH(M,Mout) τ(M,Mout)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∈DetH∗(M,Mout)/±1

e
i
h̵
(⟨B,a∣in⟩X∈+⟨b∣out,A⟩Xout

−⟨ϕ∨B,KϕA⟩X)µ
1

2B´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
[unintelligible]part of the effective action

So I have three terms, the parts where a talks to the in boundary, where b talks to
the out boundary, and where the boundaries talk to each other.

The properties of this answer are the following. First of all, it satisfies this
quantum master equation, and this is very easy to derive, deriving this is an im-
mediate consequence of the fact that the exponential of the action times the half
densitysatisfies

(∆ +Ω)e i
h̵
Sµ

1

2 = 0
(I’ve omitted properties of h̵) but this implies that

∆res +Ω)Z = 0
and if I change gauge fixing (i, p,K), then this changes by an exact term, Z goes
to Z + (∆res +Ω)(something).
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I can only make the statement if the decomposition doesn’t change at the bound-
ary. So Z is invariant with respect to aggregation of cells relative to the boundary.
If I just change the cell decomposition relative to the boundary, I go to the coho-
mology of Ω, the smallest model of this space of states, going from (H,Ω) to H∗Ω,
and this is Hmin and then there’s a reformulation completely independent of the
cell decomposition.

So I should say that the gluing, [pictures], if I have two cobordisms which I glue,
MI to MII , with interface Σ2 and other boundaries Σ1 and Σ3. I have ZI and ZII ,
and ZI depends on A2 and B1 and MII depends on B2 and A3. Also some zero
modes. The first step is to compute ZI ∗ZII , by which I mean integrating over A2

and B2, inserting something to change polarizations. But then I don’t obtain the
final result, I depend on zero modes, on too big a space of zero modes, zero modes for
two different choices of component for a and b. So I need a smaller space, and that’s
also done by a BV pushforward P∗. So for instance I have H(MI ,Σ2) ⊕HMII ,Σ3

,
which is bigger than or equal to H(M,Σ3), but you can push forward here. You
can also do the same thing for the b fields.

Okay, so our gluing procedure is going in two steps, pairing the states in the
gluing interface and then choosing the residual model we prefer.

I chose the simplest possible model, and there’s a non-Abelian version that is
more interesting but that I couldn’t start until I got here. I can only define this for
prismatic complexes, where cells are products of simplices.

You can construct such a cellular theory, which will also satisfy the quantum
master equation, you can construct such an action and it will satisfy the quantum
master equation, and you can play the game of pushforwards with more interesting
Feynman diagrams, tree and one-loop Feynman diagrams, and your ultimate parti-
tion function has information on the torsion, but explores the formal neighborhood
of a flat connection, and looks at how singular the point is in the moduli space and
what happens to the torsion, this is the tree part. This is somehow the rational
homotopy type of the manifold, this is the squeezed version of what this gives you.

3. Andrey Losev: Feynman geometry

Before I start to talk, I’d like to tell, I prefer private talk from person to person,
so for general talks I give general ideas, this is an appetizer for what people can
discuss with me in private. I’d like to talk not only about Feynman geometry
but also about how and why A∞ algebras are the proper geometry in twenty-first
century physics. The reason for this will come from two places. The first place is of
course Feynman geometry. The second reason is a kind of unification of space-time
and fields.

The second actually comes from, there is an idea that space-time is doomed, and
if so then we need to do something else, and that’s the second part.

First I need to explain what Feynman geometry is and why I call something
Feynman geometry. Actually I’d like to give a brief review of a situation in quantum
field theory. There are actually two approaches. I call the first the Dirac–Segal
approach, to consider cobordisms colored by geometrical data (possibly empty)
and you associate to this thing by some operation I some element V1⊗⋯⊗V#∂X of
linear algebra and the main axiom is of course that I(X1 ∪X2) = I(X1) ○V I(X2)
where the contraction is along the cutting boundary.
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This is simple notation but the people who know it understand what I mean and
the people who don’t can study it if they are interested.

The geometric data is an interesting part, I(X,g) = I(X1, g1) ○ I(X2, g2). The
simplest example was found before 1930 by Dirac. For him X was an interval,
g was the length of the interval, and it was basically the condition I(t1 + t2) =
I(t1) + I(t2) of a semigroup, and the universal solution is I(t) = etH and this is
quantum mechanics. Let me stress, there is no h̵, this is internally quantum theory.

My point of view is that h̵ is a distance to classical theory. So I prefer to think
not about quantization of classical theory but classicization of quantum theory.

This is not a piece, a main thing, of my talk. I’ll return to this a bit later.
I should put another approach to QFT, which is Feynman. This approach has

h̵. We have classical physics on this side.

So ∫ Dϕe 1

h̵
S(ϕ) is the symbolic form in which we want to write a theory. This is

not a glorious way to write down a theory. This is not a mathematical construction.
This is an “idea,” not a definition. To make a definition, you need to explain how
to deal with infinite dimensional integrals.

I’m from Russia and in Russia we have two things, a constitution of the country,
like the “idea” and then we have the actual practice of what is going on, called
[unintelligible]. You need additional tools, and a tool we have here is called reno-
malization. Like in Russia, this is very geometric, you can see symmetries and
everything here, and like in Russia, the [unintelligible]and the renormalization are
quite ugly.

I’m a mathematician and I cannot tolerate this situation. Let’s try to describe
this situation in some kind of geometry, I’d like to put this under the same mathe-
matical law without tricks, guesses, and some other things.

The hint, in 2002, Kontsevich visited Russia, and he told people they were
doing old outdated algebraic geometry. He explained that geometry has to go
this way. First you have commutative geometry then differential operators, then
noncommutative geometry, then physical [unintelligible]. People went this way for
target space geometry.

But quantum field theory is about maps from source to target, so let me ask a
question: could it be that the world sheet geometry is not the outdated geometry
of the nineteenth century but the modern geometry of the twenty-first.

Suppose I’m a religious person and I think God created the laws of the universe.
Maybe we can guess them, maybe not, but probably he wouldn’t create them in
terms of outdated geometry. So the theory of the universe should not be based on
the geometry of the 19th century.

So how could the idea be implemented? Let me make a first observation, that all
action of classical field theory could be written in terms of the de Rham differential
graded algebra.

The language of classical physics is the de Rham differential graded algebra. Let
me give you several examples to convince you.

0 Example 0 is Chern–Simons theory, ∫ Tr(AdA + 2
3
A3), you may say this is

non-physical.
1 Gravity. We’ll use Palitini, Einstein’s theory is unphysical because it ignores
fermions that are spinors. Then it’s impossible to write things down in
terms of Einstein gravity. I’m also a physicist. So Einstein’s theory is a nice
mathematical model, and this is equivalent to the Palitini action, something
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like ∫ ⟨e∧⋯∧ (dω +ω ∧ω)⟩ǫ. In terms of geometry, actual data is Spin(n)-
bundles on X, V -associated vector bundles associated to an n-dimensional
representation, a connection ∇ = d+ω on this bundle, a morphism e so that
the metric g is the pullback of a metric on the bundle under e [missed some].
The action is again written in terms of the differential graded algebra.

2 Let’s look at Yang–Mills, the action is ∫ F ∗ F , and the star prevents me
from writing this down, but to first order it’s ∫ pF +p∗p, and ∗ belongs to
Riemann, Hodge, but not to differential forms.

If I understand p = e ∧ ⋯ ∧ ep̃, then this action could be replaced by
e ∧⋯∧ ep̃(dA +A2) +Tr(p̃p̃) ∧ e ∧⋯∧ e

So in every case I get a differential graded algebra.
For all these things I could add ghosts and I’d get solutions to the BV master

equation.
Now I should explain what Feynman geometry is. The idea is to replace the de

Rham differential graded algebra by an A∞ algebra with operations belonging to
trace class.

The operations, pointwise multiplication, don’t belong to the trace class, and
this is the origin of the ∞s. Propagators are not strong enough to make things
trace class.

Yesterday I was on the excursion, and we went to Buddhist churches. Buddha
is not giving you a solution, just a way. I’m inspired by the excursion, so I will
not give you the solution, I’ll give you the way. Take the replacement and then
study how all these actions could go over to the A∞ trace class Feynman geometry
(so-called because you can do these integrals in this geometry).

So Chern–Simons theory could clearly be put in such geometry. It’s interesting
to study other theories. The picture I have in mind is the following. I have a
space of Feynman geometries We want to go some particular place, to our classical
geometry. We need to unfortunately quantize our geometry to see if there are
theories over Feynman geometries that exist and consider the limit when Feynman
geometry goes to classical geometry.

Talking about physics, by the way, saying the fact that our spacetime is con-
tinuous, exactly, is not something we could ever prove. We could only show it up
to some length scale. Since we could not imagine anything else before, we said “it
should not be something we cannot imagine, so it should be continuous.” But this
is nineteenth century logic. Thanks to mathematicians, we can still imagine more
things. But even if this is still true to all scales, the place where this stuff lives is
not over Feynman geometry but over classical geometry.

So there’s a dichotomy between the Dirac–Segal quantum physics/classical ge-
ometry/no h̵ picture, and the Feynman h̵ and Feynman geometry.

Then when I explain this idea, let me give you some examples of Feynman ge-
ometries that we already know and study. We studied it, not calling them Feynman
geometries, but as constructions to do some computations. That’s what I’m going
to review.

In the construction of Feynman geometry, there is an anomaly phenomenon, this
means there are two things that you cannot preserve simultaneously. Here the two
notions are commutativity and associativity. This means that when you try to go
to finite dimensions, you cannot preserve both. This phenomenon was observed
around the 60s in one of the first conferences where Russian and Western people
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got together. This was called the Kolmogorov problem. They tried to replace Ω∗

by cochains. How to construct a supercommutative associative multiplication on
cochains. People tried and found that it is impossible. So when you are passing
the exam in topology, you are using the cup non-commutative associative comulti-
plication. How does it go? On a simplification, you have a set (1, . . . k), and you
comultiply ∑(1, . . . k1) ⊗ (k1, . . . , k). This was considered to be a technical tool to
show that you have a comultiplication that leads to the multiplication on homol-
ogy. This is associative but it’s not commutative. Kolmogorov tried to conserve
commutativity but not associativity. You can’t have both, the way out, as we saw
with Pasha, is to give up and replace associativity with an A∞ structure.

Let me give other examples. Consider something like fuzzy space, this is a very
clear thing, you consider dimension N representations of SU(2), let me write it in
terms of differential operators ∑si,j=0 zi ∂

∂zj
acting on PN−1(z0, z1). I basically want

to call this sum (renormalized by 1
N
) by the name Zij . Then [Z,Z] = 1

N
Z. So

when N →∞, you get a commutative thing, and it’s functions on the sphere.
This is finite-dimensional, round (equivariant with respect to SU(2)) commuta-

tive, but not associative.
Let me give one more example, which is published, more or less, by Costello.

Consider the standard multiplication, it’s multiplication on de Rham forms. Put
on the output e−β∆, the product we use in index theory. The product is nice.
It’s homotopically the product we wanted, and it’s [unintelligible]. But it’s not
associative.

However, since this box is exact, it’s not a problem to deform it to a homotopi-
cally associative product, which is the following product. Let me just write down
m3. This is [pictures].

It’s possible to get a similar product as follows. Consider induction of A∞ on the
space of differential forms such that the eigenvalues of the Laplcian or less that E.
This will have no associativity, A∞ structure, but the space is finite dimensional,
so it’s another example of Feynman geometry.

Let me give you one more example. The last example that keeps me from being
destroyed in the mathematical community for not knowing the main developments
of the last fifty years, is that string theory in the Zweibach formulation is Feynman
geometry. Basically you know this, this is Feynman geometry that goes to loops.
As far as I understand, Pasha knows that A∞ geometry on simplices go to loops. So
it’s an interesting question to study. But this formulation is exactly the Feynman
geometry. It’s the geometry on the target space. Moreover, the construction of
Costello may be considered as the tropicalization of the Zweibach construction.
It’s some part of the space of graphs with lengths on the edges. For Zweibach it’s
surfaces.

I want you to have a new look at what we’re doing in quantum field theory. The
thing I’ve written down is the proper way to do cutoffs.. Simplicies is how to do
lattices. We want a quantum field theory over Feynman geometry. The study of
quantum field theory is like, you go to Feynman geometry and explain what you’re
doing in definite examples, and study universal relations, which actions could be
put to Feynman geometry, and what are the conditions that obstruct this or that
action.

That’s what I’d like to tell you about Feynman geometry.
[some discussion]
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Feynman geometry is dual to A∞ algebra under the algebra-geometric corre-
spondence in the same way that standard geometry is related to C∗ associative and
commutative algebra. What we are doing on the algebraic side is replacing this
algebra with A∞-algebra. Chern–Simons already can be done this way.

[some discussion]

4. Brian Williams: Chiral differential operators from curved

beta-gamma

I’d like to thank the organizers for inviting me to speak. I’m going to start with
some motivation. The motivation comes from a model we’ve talked a lot about
last week, that’s σ-models, concerned with studying maps φ ∶ S → Y , from a source
manifold S to a target manifold Y . The formalism I like to think about is the idea
to describe Y the target by some Lie algebraic data and then form a field theory
on the spacetime source S that looks formally similar to a gauge theory. This is all
joint work with Owen Gwilliam and Vassily Gorbanov.

We’ll talk more about that later, let me, there are a plentitude of examples that
exploit this prescription in the literature, let me review some.

Some examples, Grady–Gwilliam and Grady–Si Li–Qin Li study the example
where S is the circle and Y is a symplectic manifold. We heard about this in
Qin’s talk and this is called “topological quantum mechanics.” The next example,
studied by Li–Li and by Rozynblyum, S is a Riemann surface of genus g and Y is
the cotangent bundle of a complex manifold, and they formulate this as a model of
the “topological B-model.” The last example, studied by Kevin Costello, S is taken
to be an elliptic curve E and Y is the cotangent bundle of a complex manifold S,
and we study holomorphic maps form E to the cotangent bundle.

For this talk, study a variant of Costello where S = C, so local in spacetime, and
look at maps C → T ∗X that are near the constant (zero) section. Another way to
say this is that we’re studying a cotangent theory for holomorphic maps C → X,
perturbing around degree 0 holomorphic maps.

The output of BV quantization for our setting is a factorization algebra, which
I’ll try to say a little bit about later, and our theory that we’re going to consider,
and this is called curved βγ in the physics literature (called bc in the supersymmetric
version), and this is what is called a holomorphic theory, and rather than definining
this, the output is a holomorphic factorization algebra on C and this is basically a
vertex algebra. We’ll identify this vertex algebra as a familiar object in algebraic
geometry.

The main result is that quantization of curve βγ is the sheaf of chiral differential
operators, some sheaf CDOX of vertex algebras on X.

Okay great, so let me start witha brief review of quantization the way that I’m
thinking about it and the way that we’ll use in this talk. Everything we do is in
the Lagrangian formalization of classical field theory, so we start with a space of
fields, an action functional, this describes a classical moduli problem. We could ask
to quantize this data to give (perturbative formal) quantum field theories, and by
the way everything we do is in the formalism of an effective approach in terms of
heat kernel methods developed by Costello.

The outputs of these quantum field theories, there are two main things you can
do, there’s a global story (global on the source) and a local story. The global story
you can study things like the partition function, related to the path integral, and
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the local story produces factorization algebras on spacetime (which is C). We’d like
to compare these to well-known objects from physics and algebraic geometry as a
secondary step.

For curved βγ, a result of Costello relates the partition function for curved βγ to
something called the Witten genus of the target manifold. I think Dan will talk a
bit more about the Witten genus in his talk. We’re concerned with the local story
anyway.

Okay, so let me make some remarks, so quantization may not always exist. This
is exactly the failure to satisfy the quantum master equation. Another remark is
that there may be many quantizations, we’d like to consider deformations of our
theory. Luckily for us, there’s a complex that I’ll call the deformation complex
and write Def, that contains all of this information. So H1(Def) is where these
obstructions (anomalies) live, and H0(Def) is where the deformations live, and
H−1(Def) is where automorphisms live.

So formal moduli problems are completely described by Lie algebras, Koszul
duality if you want to say it in a fancy way. There’s a totally Lie algebraic version
putting all of this together.

Classical field theories are equivalent to the data of a local L∞ algebra with the
extra data of a type of pairing. Local means it’s on spacetime S.

So if L is a classical field theory, there’s a nice description of this deformation
complex as the Chevalley–Eilenberg cohains on L, but a special type called local
cochains, Qin called these local functionals.

The condition is twofold. Local functionals means Lagrangian densities, so built
from jets of fields, so partial derivatives of fields, and you can thus think of these
as sitting inside all functionals.

Let me say something about observables. Morally speaking, they are taking
measurements of our theory. We do this as functionals on our fields, which in this
Lie algebra setting is cochains C∗(L) on L. Of course this is a familiar object, a
complex computing this looks like

(Sym(L∨[−1]), dCE)

where dCE = {SCl, }.
Maybe I don’t have time to say too much but this exhibits a factorization struc-

ture but it means that when I have two opens U and V in a bigger open W all in
S, disjoint:
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V

U W

then you get a map ObsCl(U)⊗ObsCl(V )→ ObsCl(W ), and quantization gives
quantum observables.

Let me give an example. Let L be Ω0,∗(C)[−1] ⊕ Ω1,∗(C)[−1]. Now don’t
worry too much about the cohomological shift. this is describing holomorphic maps
C→ C.

Calling pairs in this (γ, β), the action functional has this form

S(γ, β) = ∫
C
⟨γ, ∂̄β

where the pairing is wedge and integrate.
There’s an n-dimensional version where my target is Cn, and then I get n copies

under direct sum of my previously stated L, and then I can say S(γi, βj) and use
the same formulas.

This is really flat βγ. What is Costello’s model. As I alluded to, you start with
a complex manifold X, and we want to describe it by some Lie algebraic data gX ,
which is actually a sheaf of L∞-algebras on X. I won’t provide the construction,
but a defining piece of information is that C∗(gX) ≅ OX .

Okay, so we use this description to write down curved βγ on X,

LX = Ω0,∗(C, gX)⊕Ω1,∗(C, g∨X[−2])
This means that if I apply this to an open set U , it looks like this:

LU = Ω0,∗(U, gX) ⊕Ω1,∗(U, g∨X[−2]).
The main theorem that I’ll reference from Costello’s work is the following

Theorem 4.1. ●
Def ≅ Ω2

Cl(BgX)[1]
which means that H1(Def), where the anomalies live, can be identified with

H2(X,Ω2
ClX)
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● moreover, the obstruction to quantization is identified with an object in
H1(Def), which is the second Chern character of the holomorphic tangent
bundle on X, ch2(TX)

Remark 4.1. Let me write down the Feynman diagram that gives this obstruction.
Consider two vertex diagrams like this, and sum over the number of inputs of things
that look like this

and this is ch2

Theorem 4.2. Suppose that ch2(TX) = 0, so that there is a quantization. Then
Obsq ≅ CDOX

What does CDOX(U) do for U ≅Dn, this is Vn, the vertex algebr, generated by
2n fields βi(z) and γi(z) with an operator product expansion of the form

βi(z)γj(w) ∼ δij

z −w.
A theorem of [unintelligible]says the following. Chiral differntial operators may

not always exist, there’s some kind of problem.

Theorem 4.3. (GMS) If ch2(TX) = 0 then there is a sheaf CDOX which is locally
Vn, this βγ vertex algebra.

4.1. Localization. So in the next section I’d like to talk about our approach to
proving our theorem. This passages through a procedure called Harish–Chandra
localization. What is the picture? We start with objects defined on the formal n-
disk, D̂n. I mean modules over the formal n-disk. You can call this formal geometry
if you like, There’s some construction LocX that produces from these objects (in
arbitrary categories, though for us it’s vertex algebras, factorization algebras), gives
sheaves on X.

The main object, we have coordinatizations Xcoor sitting over X, where over p
we have jets of formal coordinatizations near p. You have Aut(D̂n) acting here,

and given M an Aut D̂n-representation, you get M, which performs the Borel
construction, Xcoor×AutM , but this is huge, always infinite dimensional in examples
we care about.

An example to keep in mind, the infinite jet bundle on X, JX , how is it related
to a more familiar object? There’s a canonical flat connection ∇jet on JX , and flat
sections are precisely functions on X. So we want to try something similar in this
setting.



HOMOTOPICAL METHODS IN QFT 13

So we’ll look for the data of a flat connection on this bundle here. One can
identify the tangent space of this coordinate bundle TXcoor at the coordinatization
ϕ with Vect(D̂n). This tells you that we need to consider actions of this Lie algebra
of vector fields on our modules M . I should be pedantic, this is more data that
just a representation of Aut, it contains [unintelligible]. From now on I’ll only talk
about actions of Vect due to the following remark (why we’re working in the formal
setting)

Remark 4.2. There exists a semidirect product splitting of the following form

Aut = Aut+´¹¸¹¶
pronilpotent

⋉GLn

We can integrate our Aut+ so that we only have to keep track of GLn, and that
will be pretty obvious. I won’t talk about it in this talk but it’s easy.

The idea is [missed a little]

(1) σ-model C→ D̂n

(2) (Vect,Aut)-action
(1) So we choose

LD̂n = Ω0,∗(C, gD̂n ⊕Ω1,∗(C, g∨
D̂n[−2]))

Remark 4.3. This theory is free so automatically admits a quantization
ObsqDn on the formal n-disk.

The action looks like

S(β, γ) = ∫
C
β ∧ (∂̄γ + ℓ0 + ℓ1(γ)).

Okay, so that’s great, the next thing, I’d like to address:

Lemma 4.1. We can identify Obsq
D̂n

with Vn

so we want to bootstrap this to get our global object.
(2) We need a Vect action. Well, Vect acts on g so they also act on LD̂n at the

classical level. The question we’d like to ask is whether we can quantize
equivariantly with respect to this structure.

The method of proof is something called a background field approach. The data of
the action is equivalent to an L∞ structure that is the structure of a classical field
theory on LD̂n ⊕Vect(D̂n). My new action has the following form,

S(β, γ) + SDn(β, γ) + ∫ ⟨β,X ⋅ γ⟩
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
interaction term

The reason I’m saying background term is that the only kinetic term is in the
middle term, with no interaction with vector fields, so they don’t propagate.

So what is the deformation complex, it looks like

Def ≅ C∗(Vect,DefD̂n)
where DefD̂n is just the formal deformations associated with the n-disk.

A quick calculation (bootstrapping Kevin’s result) says that DefD̂n ≅ Ω2
Cl(D̂n)[1].

Then the last calculation is
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Lemma 4.2. The obstruction to quantization is equivalent to an extension of Vect
by this deformation module

DefD̂n → Ṽect→ Vect

So in terms of Feynman diagrams, we again have two-vertex diagrams, but now
with one input on each side decorated by X and the others by g. Sum over all

numbers of inputs.

g

X

g

X

g

We identify this deformation complex with C∗(Vect,Ω2
Cl), and identify it with

something we call the universal second Chern character chu2 .
What’s going on here? There’s a cohomology theory for Harish–Chandra mod-

ules that I won’t describe, so I can consider

H∗HC(⟨Vect,Aut⟩,M)
which localizes over X to H∗(X,M). Now, there’s a map from this Gelfand–Fuchs
cohomology H∗(Vect,Ω2

Cl) into this Harish–Chandra thing,

H∗(Vect,Ω2
Cl) →H∗HC(⟨Vect,Aut⟩,Ω2

Cl) →H∗(X,Ω2
Cl)

and it’s basically defining that chu2 maps under this to [unintelligible].
A corollary is that

Corollary 4.1. Obsq
D̂n
≅ Vn is an equivalence of Harish–Chandra modules.

The important part is that they’re not modules for the original Harish–Chandra
pair, but actually for the central extension.

The last fact is that Xcoor, this kind of Aut-bundle, has a lift X̃coor to an Ãut
if and only if ch2 TX is zero.

A corollary of GMS identifies in this situation CDOX with LocX̃coor(Vn), which
implies that the localization of CDOX is isomorphic to Loc(Obsq

D̂n
).

So this felt very different from Costello’s construction. We started with an equi-
variant quantization, which gave us a factorization algebra on C with a (Vect,Aut)-
action, and what did we say, we said that we could localize this guy along X̃ to
a sheaf of factorization algebras, this was the output of Costello’s quantization.
We could also identify this factorization algebra by the vertex algebra relationship
to with a vertex algebra witha an ⟨Aut,Vect⟩-action, and CDOX was constructed
by localizing this guy, and there’s a nice functor from the sheaf of factorization
algebras that feels like a fiberwise thing.
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The last thing to do is to say that Costello’s quantization agrees with our equi-
variant quantization. I didn’t talk about this today, but it can be done with similar
methods.

{Equiv. quant.}
��

{Costello quant.}
��{C − fact. alg., ⟨Vect,Aut⟩ − action} LocX∨ //

Vect

��

{sheaf of fact. alg.}
Vect

��{vert. alg., ⟨Vect,Aut⟩ − action}
LocX∨

// {sheaf of vert. alg.}

5. January 12: Damien Calaque: Deformation quantization of shifted

symplectic and Poisson structures

The purpose of my talk today is to introduce shifted symplectic and Poisson
structures so other people can use them.

This is after and joint with Pantev–Toën–Vaquié–Vezzosi.
For an introduction, let me look at AKSZ versus PTVV. In the first, we look at

maps from ΠTX to Πg, and you pull back the Killing form, basically a symplectic
form, and then integrate over ΠTX and then you get back some kind of two-form
in the mapping space.

Everything is an actual form, this is all strict, and when you try to write down de-
generacy you have an infinite dimensional space, so you say it’s injective on tangent
and that’s enough. But we want to do everything in a homotopical way. You can’t
talk about being injective. Here’s what people usually do. Replace Πg by BG, this
captures more global information, if you look at the moduli space of G-bundles with
flat connection. You get more symmetries, not just the trivial G-bundle. There is
a stack XdR, and we look at stack maps (XdR,BG) and here on BG we’ll get a
2-shifted symplectic form, that’s basically the Killing form still. Your Berezin mea-
sure is a fundamental class [XdR] and this gives some version of Poincaré duality,
let’s say. Then we integrate over the fundamental class ∫[XdR]

ev∗ ωBG. The main

two differences are that we do everything up to homotopy, so we can’t, say, that
things are closed, but only closed “up to homotopy” (I’ll give more detail later) and
secondly, this is not an infinite dimensional object, how do you compute a tangent?
Say f is a map, then Tf MAP is global sections of f∗TΠg. This is some complex,
but it’s a perfect complex, which comes from the fact that since X is compact,
its homology is finite dimensional. Here nondegeneracy is that the map between
tangent and cotangent is a quasi-isomorphism. We’re now in algebraic geometry
instead of differential geometry, but that’s not a big deal here, everything can be
done in differential geometry.

So let me start by introducing shifted differential forms. The basic objects I
will work with are X a derived geometric stack. Fortunately or unfortunately I’m
not going to define what this is. One way to do differential geometry is to say
that spaces are maps from test spaces to your space. So X is some functor from
differential graded commutative algebras (test spaces) with nice properties.

So one can construct something DR#(X), that’s a graded complex, a complex
with an auxilliary grading. Take Γ(X,S∗(LX[−1])), this is wedge power of the
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cotangent bundle, there are two degrees, one from cohomological degree and one
from the symmetric power. The second degree I’ll always call weight.

So that’s the graded complex of forms on X. In concrete terms, if X is SpecA,
then DR(X)# is just S∗A(LA[−1]) where LA, you resolve A, it will be Ω1

Ã
⊗Ã A.

It’s the derived module of one-forms, if you wish.
Notice that even if A is not derived, a perfect commutative ring, we might have

nontrivial cohomological degree on LA because of the resolution.
If X is BG, then it’s a known calculation that LX ≅ g∨[−1], and it’s also known

that QCoh(X) ≅ G−mod. Then the de Rham complex of X is C∗(G,S∗(g∨[−2])),
just using the fact that Γ(X, ) ≅ C∗(G, ).

I’m ready to tell you what a form is. a p-form of degree n on X is an element
in π0 of Mapgr− cpx(k(p)[−n − p],DR(X)#). So taking the weight p part is a pth
symmetric power, so we’ll get a component of k[−n − p],Γ(X,Sp(LX[−1])).

So this is an n-cocycle in Γ(X,Sp(LX[−1])[p]) up to coboundary.
If X is BG, then these are n-cocycles in C∗(G,S2(g∨([−2])[2])), so 2-forms of

degree n, so (n − 2)-cocycles in C∗(G,S2(g∨)). So if n = 2, then 2-forms of degree
2 are elements in S2(g∨)G, a 2-form on BG is symmetric invariant pairings on the
Lie algebra.

Now I want to talk about nondegeneracy. Assume LX is perfect, so it has a dual
which we’ll define to be TX . Then a 2-form ω0 ∈ A2(X,n), a 2-form of degree n, is
said to be non-degenerate if the induced map TX → LX[n] is a weak equivalence.

In the case of BG, non-degenerate 2-forms of degree 2 are (S(g∨)G)ND, actually
non-degenerate pairings (since TX and LX are in one degree)

If X = SpecA, for A a nonpositively graded commutative differential graded
algebra, then there are no nondegenerate 2-forms of positive degree. The fact of
getting an isomorphism between tangent and cotangent, this puts bound on the
amplitude of your cohomology. You can’t get positively shifted nondegenerate
forms.

You can also check that if you have a perfect tangent complex, you have a
nondegenerate thing of one degree, then you won’t be able to pair nondegenerately
with any other degree.

Now I want to talk about closed forms. There exists some graded muxed complex
DR(X) such that DR(X)# is DR(X)#. This sounds silly. This has a different
differential of weight one which commutes with the other. So it’s V ⋅, where the dot
is for the auxilliary grading, with maps ǫp ∶ V

p → V p+1[1], and ǫp+1ǫp = 0. Then #
means the underlying graded complex.

We care mainly how this looks on test objects. DR(X) = S∗
Ã
(Ω1

Ã
[−1]) with

epsilon = ddR, it has degree 1, commutes with the internal differential, and weight
1. If you take the underlying graded complex, it’s the same guy without the de
Rham differential, and since A and Ã are quasi-isomorphic, this guy is equivalent
to S∗A(LA[−1]), what we were calling DR(X)#

So if X = BG, with G reductive, then DR(X) = S∗(g∨[−2])G, and because of
degrees, we see that ǫ = 0.

Definition 5.1. A closed p-form of degree n is an element in π0Mapgr− cpx(k(p)[−n−
p],DR(X)).

You want something that’s ǫ-closed up to a boundary.



HOMOTOPICAL METHODS IN QFT 17

So anyway, that’s the same thing as an element of

π0(Map(k[−n − p],∏
q≥p

DR(X)(q), d + ǫ))

and what is that? A closed p-form of degree n is a series (ω0, ω1, . . .) where ω0 is a
p-form of degree n, something of weight p and degree n+ p, closed under d, and ω1

has weight p+ 1 and degree n+ p− 1, and ǫ(ω0) = d(ω1), and so on and so forth, so
ǫ(ωi) = d(ωi+1).

As I said, on BG for G reductive, all forms are closed on the nose without adding
additional homotopies.

Definition 5.2. An n-shifted symplectic structure onX is a closed 2-form of degree
n on X, called ω such that ω0 is nondegenerate.

Examples of this are, well, BG, when G is reductive, together with t a nonde-
generate pairing in (S2(g∨)G)ND, this is 2-shifted. Perf is another example, inside
this you have the stack of vector bundles, basically ∪BGLn. Whenever you have
T∗[n]X, that’s n-shifted symplectic. For instance, if you take T∗[1]BG, that hap-
pens to be [g∗/G], that’s 1-shifted symplectic.

If you have a symplectic groupoid, then its quotient stack [G0/G1] will be 1-
shifted symplectic as well.

Then there’s this AKSZ/PTVV, say that X = MB (the stack classifying local
systems on a compact oriented manifold of dimension d) or X is a projective smooth
algebraic variety together with a trivialization of its canonical bundle, so a d-Calabi–
Yau variety.

IfX is one of these two, then the mapping stack Map(X,Y ) will be (n−d)-shifted
symplectic.

This will have a function on X tensor a 2-form on Map. Then you use the
fundamental class to kill the function on X, basically Poincaré or Serre duality. So
for Y = BG, the G-local systems on a closed oriented surface, this is 0-symplectic.
For a 3-manifold it’s −1-shifted symplectic. That’s the starting point for classical
BV. Then [unintelligible]on a K3 is 0-shifted symplectic; for a 3-Calabi–Yau, it’s
again −1-shifted symplectic, this is the starting point for BV in holomorphic Chern–
Simons.

Let me quickly define Lagrangian structures. Assume we have an n-symplectic
guy Y and a map f ∶ X → Y . An isotropic structure on X is a homotopy between
0 and f∗ωY in the space A2,cl(X,n). It’s important that it stays in the space of
closed forms, a homotopy between the whole series.

A Lagrangian is isotropic and nondegenerate, and I have to explain what non-
degenerate means in this context.

So we’ll mimic for a sypmlpectic form. So nondegeneracy is a property of γ0. We
have TX → f∗TY , treat it as if X is a submanifold of Y . Then this is f∗LY [n] →
LX[n]. The composed map is homotopic to zero so it has a lift to the homotopy
fiber, and what is this fiber? They are the elements of TY killed with TX under
the symplectic form, so you can say it’s ToX , or Lf [n− 1], these two are equivalent,
it’s saying that TX sits inside its symplectic orthogonal, and you want this map
to be surjective as well as injective. For us we require that this map is a weak
equivalence.
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Let’s talk about examples. Take the point with the n + 1-shifted symplectic
structure 0, then look at Lagrangians in X mapping to the point, those are n-
shifted symplectic structures on X.

Let X → g∗ be a smooth symplectic G-scheme with a moment map, then[X/G]→ [g∗/G] is Lagrangian.
There are a lot of constructions that have a nice interpretation in terms of these

Lagrangian structures. Then the map G0 → [G0/G1] is Lagrangian as well. This is
a reinterpretation of work of Ping Xu.

I have ten minutes to talk about shifted Poisson structures. The reason I want to
talk about these is that you want to [missed a little], we want to quantize stacks in
a way that preserves field theories, so I want to get En structures, so first I should
get Poisson structures. We all know that symplectic structures lead to Poisson
structures. This is a place to do a lot of work to see that symplectic structures lead
to Poisson structures.

You could say that an n-shifted Poisson structure on SpecA is a Pn+1-structure
on A, that’s by definition a Pn+1 algebra B together with an equivalence between
B and A as commutative algebras.

There’s another way, there’s an equivalence between Poisson structures and
bivectors whose bracket with themselves is zero, so look at Maurer–Cartan ele-
ments in Poly(A,n + 1)[n + 1], and Poly(A,n + 1) is SÃ(Der(Ã, Ã))[−n − 1], and
here you have a Lie bracket of weight −1 and degree −n − 1, it’s basically the Lie
bracket of derivations, and to make it an actual Lie algebra, you shift it. There’s
again an auxilliary grading, and the bracket again has degree [unintelligible]. It’s
not quite exactly Maurer–Cartan, because it’s only up to homotopy for the auxil-
liary grading.

The two definitions do not exactly coincide, there’s a map from Pn+1-structures
on A to Poiss(A,n), you can turn a strict model into an actual Maurer–Cartan
element with no homotopies. There is a theorem of Melani, which says if LA is
perfect then this is an equivalence. That’s what we’re interested in, and since we’re
starting with symplectic we expect this to be perfect.

Let me say, with a lot of work you can make sense of this for an arbitrary derived
stack X of locally finite presentation. All this still works, for instance, if X is BG
with G reductive, then shifted polyvectors on BG is the same as S∗(g[−n])G and
Poiss(BG,n) will be in elements in (∧3g)G if n = 1, elements S2(g)G if n = 2 and
nothing otherwise.

The last thing is, there is a morphism, a map of spaces, which goes from Poisson
structures of degree n on a stack to A2,cl(X,n) which sends nondegenerate Poisson
structures to symplectic ones. The induced map Poiss(X,n)ND → Symp(X,n) to
symplectic ones is an equivalence. This is not easy to prove.

Then you can use a similar kind of equivalence, get a Pn+1 algebra and maybe
quantize it to an En+1-algebra object, and as soon as n ≥ 1, this works perfectly
well. For n = 0 you need some Kontsevich type deformation quantization, and for
negatively shifted things, you need something completely different. [some descrip-
tion].
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6. Pavel Safronov: Poisson geometry of groups and shifted Poisson

structures

In this talk I’ll continue Damien’s talk, and give an application of the theory he
described.

Let me start with some motivation for shifted Poisson structures. So you start
with X a smooth manifold, and you know that X is Poisson, this means that if
you look at QCoh(X), a symmetric monoidal category, you want to deform this,
a Poisson structure gives a direction in the deformation space of this category,
this gives a plain category QCohq(X). You can ask about symmetric monoidal
deformations. If X is 1-shifted Poisson, you should try to deform QCoh to a
monoidal category. If X is two-shifted Poisson, you should deform to a braided
monoidal category, and so on.

My main example will be the stack X = BG for the following reason. You can
look at QCoh(BG), and this is Rep G, and your question for the deformations of
this to a monoidal or braided monoidal category, this question of classification of
deformations is related to classifications of shifted Poisson structures on BG. These
categories of monoidal and braided monoidal categories are related to quantum
representations of G, that’s my main motivation.

Let me remind you how to define shifted Poisson structures. I’ll also define
coisotropic structures, so L → X is coisotropic, then you have an action QCoh(X)
on QCoh(L). If this is 1-shifted, then this has a deformation to some monoidal cate-
gory QCohq(Q) and a deformation to QCohq(L), an ordinary category. Coisotropic
means that this action deforms as well. If things are two-shifted then this is a
braided monoidal category acting on a monoidal category.

Let me remind you from Calaque–Pantev–Toën–Vaquié–Vezzosi, say X is a nice
derived stack, then you can introduce Poly(X,n) = Γ(X,Sym(TX[−n− 1]))[n+ 1],
this is a graded algebra, with grading from the symmetric algebra, this is a graded
P (n + 2)-algebra under the analogue of the Schouten bracket, and I’ll say

Theorem 6.1. (Calaque–Pantev–Toën–Vaquié–Vezzosi) Poly(X,n) is a graded
differential graded Lie algebra.

Definition 6.1. A shifted Poisson structure on X is

π ∈Mapgrdgla(k(2)[−1],Poly(X,n)).
If f ∶ L → X is a morphism of derived stacks, then you can define relative

polyvectors

Poly(f, n) = Γ(X,Sym(TX[−n − 1]))[n + 1]⊕ Γ(L,Sym(TL/X[−n]))[n]
and there’s a differential from the first to the second term. If you have a vector field
on X, you can pull it back to a vector field on L, and then you can use pushforward,
there’s a sequence TL/X → TL → f∗TX . Again, this is a graded complex, and I
claim that this is a graded differential graded Lie algbebra.

Let me say it’s a quasi-theorem (Melani–S.) that there is a graded differential
graded Lie structure on the relative polyvectors and their projection maps

Poly(f, n)
''◆◆

◆◆
◆◆

◆◆
◆◆

◆

ww♦♦♦
♦♦
♦♦
♦♦
♦♦
♦

Poly(L,n − 1) Poly(X,n)
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and I claim that these are maps of graded differential graded Lie algebras.
So using this theorem (which I will assume) you can define coisotropic structures.

Definition 6.2. Suppose X is n-shifted Poisson. A coisotropic structure on the
morphism f ∶ L→X is a lift of the Poisson structure (a map k(2)[−1]→ Poly(X,n))
to Poly(f, n). This lift is my coisotropic structure.

Let me observe that if L → X is coisotropic and X is n-shifted Poisson, then L
has has a natural n − 1-shifted Poisson structure. This is coming from the other
projection map from the theorem. You lift and push down as above.

This definition of coisotropics, for example, for n = 0 if L and X are smooth
schemes, then this is the usual definition of coisotropic structures on submanifolds.

This is quasi–Poisson geometry, let me try to apply this to BG. Let G be a
group, not necessarily reductive. Then I’ll define (this is classical):

Definition 6.3. A quasi-Poission structure on G is a a bivector π ∈ Γ(G,∧2TG)
and a trivector ϕ ∈ ∧3g, such that

π(g1g2) = Lg1πg2 +Rg2πg1
(multiplicativity), such that [π,π] = ϕL −ϕR
and so that [π,ϕL] = 0
If ϕ = 0 then this is called a Poisson Lie structure.

Such elements act by twistings, there is an action of ∧2G on the set of quasi–
Poisson structures, and this defines a groupoid, quasi-Poisson structures mod twists.

Here’s a theorem classifying quasi-Poisson structures on BG.

Theorem 6.2. (S.) Consider n-shifted Poisson structures on BG. If n > 2 then
there are no nontrivial Poisson structures. If n = 2, the space is a set, given by

Sym2(g)G,
call such elements Casimirs. If n = 1, then the space is the groupoid of quasi-
Poisson structures modulo twists. If n < 1 you can only get Poisson structures if G
is not reductive. I will not talk about those.

Here I gave a classification of shifted Poisson structures. Let me reinterpret this.
Braided monoidal deformations of RepG are controlled by Casimirs, elements in
Sym2(g)G, and monoidal deformations of RepG are controlled by quasi-Poisson
structures.

What else can you do with this?
Next I’ll talk about coisotropic structures, let’s talk about coisotropic structures

on pt → BG = pt /G. There are no nontrivial coisotropics if BG has a 2-shifted
Poisson structure. Then for 1-shifted, coisotropic structures on pt→ BG1 are given
by Poisson-Rie structures on G.

How can you think about this in the quantum context? This map from a point
to BG corresponds to a forgetful functor from Rep G to Vect. The first statement
tells you that there are no braided monoidal functors RepqG → Vect. The second
claim tells you that if you choose a Poisson structure rather than [missed some].

Okay, so let me reinterpret slightly this condition on coisotropic structures. Say
the quasi-Poisson structure, assume the structure on G is given by (π = 0, ϕ).
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Then coisotropic structures on a pt→ BG are given by twists of this quasi-Poisson
structure to an honest Poisson structure t ∈ ∧2g such that 1

2
[t, t] = ϕ. This is a

well-known equation in the theory of quantum groups, the modified classical Yang–
Baxter equation.

Let me continue talking about coisotropic structures. Suppose P ⊂ G is a par-
abolic subgroup of a reductive group. We can think about the case G = GLn
and P upper triangular matrices. Then the claim is that BP → BG, and give
BG a 2-shifted Poisson structure (the standard Killing form)—then BP → BG is
coisotropic. A one-shifted Poisson structure on BP , which we get from this, is the
same as a quasi-Poisson structure on P . So say G is reductive, the same statement
tells you that the diagonal subgroup BG→ BG2 ×BG2 is coisotropic. So there is a
way to map 2-shifted Poisson structures on BG to 1-shifted Poisson structures on
BG. This is true for any space. You can always drop the shift down by one. Start
with some Casimir and let’s trace which quasi-Poisson structure it goes to. In the
reductive case, I claim that the first space is given by Casimirs, and the 1-shifted
Poisson case is given by elements in (∧3g)G. The natural map sends c↦ [c12, c13],
where c12 = c⊗ 1 and c23 = 1⊗ c.

If you started with a c in Sym2(g)G, and then you look at coisotropic structures
on pt→ BG, they are given by t ∈ ∧2g such that

1

2
[t, t] = [c12, c23]

and r = t + c satisies [r12, r13] + [r12, r23] + [r13, r23] = 0. This is the Classical
Yang–Baxter equation.

This is saying that on the quantum level, quantum R-matrices give braided
monoidal structures on RepqG such that the forgetful functor to Vect is monoidal.

Let me mention some general fact, that a G-space is the same as a space over
BG, so if you have a G-space, then you can send it to X/G living over BG, and
a space over BG can be sent to the pull back of Y ×BG pt and here you have an
action of pt×BG pt which is G. Then you can ask if you can upgrade this to Poisson
geometry.

So say X is a smooth scheme and G is a quasi-Poisson group. Then the
coisotropic structures on X/G→ BG1 (getting the 1-shifted Poisson structure from
the quasi-Poisson structure on G) are given by quasi-Poisson G-space structures on
X (I won’t define this).

Let me mention one more classical result. Say that r is a classical R-matrix (a
solution to the classical Yang–Baxter equation). Then there exists a Poisson-Lie
structure on G where the bivector π is the antisymmetric part rL− − r

R
− , this is a

bivector at the unit, and you can translate on the left or on the right. Thys was
defined by Sklyanin. How do you interpret this in shifted Poisson geometry? It’s
very natural using the following theorem that I’ll call a quasi-theorem, joint with
Melani, that says if you have L1 and L2 coisitropic structures in X which is n-
shifted Poisson, then L1×X L2 has a natural (n−1)-shifted Poisson structure So for
pt → BG and the classical R-matrix, you get pt×BG pt Poisson Lie, and the claim
is that these two constructions agree.

Let me describe some phenomena that do not yet have quantum analogues.
Say that G is reductive and B ⊂ G is Borel, and H ⊂ G is Cartan. So think

G = SL2, B is upper triangular, and H is diagonal.



22 GABRIEL C. DRUMMOND-COLE

I mentioned that BP → BG2 is coisotropic, you can prove a similar statement,
say E is an elliptic curve. Then you can look at a map from B bundles on E to G
bnudles on it, BunB(E) → BunG(E). The codomain is 1-shifted Poisson and the
map is coisotropic. So you have a Poisson structure on the moduli of B-bundles on
E.

Now you can just go and compute in geometry what these spaces are. This
moduli BunB(E) in our case has an open substack whose components are projective
bundles over E. You can compute this Poisson structure, and this coincides with the
Sklyanin or Feigin–Odesskii Poisson structure on BunB(E), and the quantization
is known, [unintelligible], so what we call QCohη(BunB(E)), modules over the
Feigin–Odesskii algebra, so far this is known, but now you have this coisotropic
map to BG which gave a coisotropic map into BunG(E)
Conjecture 6.1. Given η ∈ E there is a monoidal category QCohη(BunG(E)) and
there’s an action of this monoidal category on modules over the Feigin–Odesskii-
algebra, and fairly explicitly you can compute this category when G is a torus. I
don’t know how to produce the quantization when G is not a torus.

Let me stop here.

7. Claudia Scheimbauer: Fully extended semi-classical TFTs and

Weyl quantization

Damien was so kind to set up the basic framework that we will need. He was
talking about AKSZ in derived algebraic geometry, and the goal today is to explain
how this leads to an oriented and even fully extended TFT, and our objects in the
target will be derived stacks, with Lagrangian correspondences, and higher versions.
I’ll try to avoid techincalities about higher categories.

If time permits I’ll explain what happens in the linear setting, just linear sym-
plectic vector spaces and linear Lagrangian correspondences.

Let’s recall from this morning the AKSZ/PTW construction. We started with Y
a k-shifted sypmlectic derived stack and we take X a derived stack, which is nice,
and by nice what I mean is has some compactness condition and some sort of a
d-orientation, and we’ll see a little later what this should be.

Then we can produce the mapping stack Map(X,Y ) and if this is nice, it has a
k − d-shifted symplectic structure.

One example is for X to be MB , the Betti stack of an oriented compact d-
dimensional closed manifold. This is the stackification of the constant prestack
which sends C∗,sing(M) to any algebra A. The orientation will give us d-orientation
of the stack X and compactness is compactness.

We want manifolds with boundary to get a TFT. So let’s do a relative version.
If M is compact, oriented, d-dimensional, and with boundary. We can look

at the same mapping stack as above, but we can also look at the mapping stack
Map((∂M)B , Y ), which will be n−(d−1)-symplectic, and we get a restriction map
from Map(MB , Y ), and this restriction map, the theorem says, has a Lagrangian
structure.
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This theorem is due to Damien and has a nice corollary, if we haveM an oriented
d-bordism, with an in and an out part, then we can do the same game

Map(MB , Y )
((◗◗

◗◗◗
◗◗◗

◗◗◗
◗◗

vv♠♠♠
♠♠♠

♠♠♠
♠♠♠

♠

Map(∂0MB , Y ) Map(∂1MB , Y )
and this is a Lagrangian correspondence, where you have a diagram X ← L → Y

and the map L→ X̄ × Y is Lagrangian.
Let’s try to understand first what this TFT should do, what the target should

be.
If we start with a cobordism we get a correspondence, and classically, composition

then becomes a problem. If you intersect non-transverse Lagrangians you don’t get
anything nice. But working in derived algebraic geometry we can always compose
Lagrangian correspondences. If we have

L

��❄
❄❄

❄❄
❄❄

❄

��⑦⑦
⑦⑦
⑦⑦
⑦

L′

  ❅
❅❅

❅❅
❅❅

❅

~~⑦⑦
⑦⑦
⑦⑦
⑦⑦

X Y Z

then we can form the homotopy pullback

L ×hY L
′

##❋
❋❋

❋❋
❋❋

❋❋

||①①
①①
①①
①①
①

L

##●
●●

●●
●●

●●
●

��⑦⑦
⑦⑦
⑦⑦
⑦

L′

  ❅
❅❅

❅❅
❅❅

❅

{{✈✈
✈✈
✈✈
✈✈
✈✈

X Y Z

and this is a Lagrangian correspondence [some discussion].
Now we can try to form a category. Our source category is cobordisms, dCobor

with objects (d − 1)-dimensional oriented closed manifolds and morphisms diffeo-
morphism classes of d-dimensional oriented bordisms.

Our targets will be Lagrangians. Our objects will be n− (d− 1)-symplectic, and
our morphisms will be Lagrangian correspondences.

Again, we need to identify some of these in a suitable sense.
Taking these diffeomorphism classes comes from the fact that we are dealing with(∞,1)-categories. ∞ means that we have morphisms of morphisms, morphisms

between those 2-morphisms, and so on. So we have Bord
(∞,1)
d , so objects are the

same, morphisms are d-dimensional bordisms, 2-morphisms are diffeomorphisms,
then isotopies, then isotopies of isotopies, and so on. The 1 means that starting
from the diffeomorphisms, these are all invertible.

On the other side, we have something similar, in Lag
(∞,1)
k−(d−1), so objects are as

above, morphisms are Lagrangian correspondences, and then various equivalences.
What if we do d − 2, d − 3, and so on? We should be able to do this, all the way
down to 0-dimensional. So actually what we want to put here is (∞, d)-categories.
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I’ll put this as Bordord , meaning Bord
(∞,d),or
d . Then we’ll get for our target

category, the point will go to, it should be k-shifted symplectic, so the target is

Lag
(∞,d)
k . Extending this down should be our goal, this should be a symmetric

monoidal functor. So given Y k-symplectic, there exists a fully extended TFT
(that’s a symmetric monoidal functor of this sort), that’s the goal. This is joint
work in progress with Calaque and Haugseng.

Okay, what did we do? We chose an object [unintelligible]target and constructed
a fully extended TFT. As a corollary, using the cobordism hypothesis (which tells
you the field theories with any target) we get

Corollary 7.1. Every object in Lag
(∞,d)
k is fully dualizable.

They even give oriented TFTs but never mind.
In the next ten or fifteen minutes I’ll explain how to build this target category

of Lagrangians.
The target category sits in Spand(dSt /A2

cl(k)). The d-fold spans were con-
structed by Rune, and he showed that they are fully (d−)dualizable. It remains to
show that it’s true in the subcategory. For d = 1 then he showed that every object is
1-dualizable. For d = 2, Amorim–Ben Basset constructed in the last week, Lag2k as
a weak two-category. But we want to get all the way to d. We use complete d-fold
Segal spaces. I’ll restrict to d = 2 for simplicity. Objects should be k-symplectic.
Morphisms should be Lagrangian correspondences. Let me unravel the condition.
We saw this morning the definition of Lagrangian. Induced from the span

L
g

��❅
❅❅

❅❅
❅❅

f��⑦⑦
⑦⑦
⑦⑦
⑦

X Y

we get maps

TL

""❊
❊❊

❊❊
❊❊

❊

||①①
①①
①①
①①

f∗TX f∗TY

and then we can go further:

TL

%%❑❑
❑❑

❑❑
❑❑

❑❑

yysss
ss
ss
ss
s

f∗TX

≅
��

f∗TY

≅
��

f∗LX[k]
%%❏

❏❏
❏❏

❏❏
❏❏

g∗LY [k]
yytt
tt
tt
tt
t

LL[k]
and the condition is for this to be a pullback–pushout square (these are the same;
this is a stable category).
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What happens when we go to 2? So for 2-fold Lagrangian correspondences

Σ

  ❅
❅❅

❅❅
❅❅

❅

~~⑦⑦
⑦⑦
⑦⑦
⑦⑦

L1

''PP
PP

PP
PP

PP
PP

PP

��

L2

ww♥♥♥
♥♥
♥♥
♥♥
♥♥
♥♥
♥

��
X Y

, we have L1 and L2 to X̄ ×Y Lagrangian ,nd L1 ×
h
X̄×Y L2 is (k−1)-symplectic and

then require that Σ → L1 ×
h
X̄×Y L2 is Lagrangian. So if X and Y are a point, we

just recover the ordinary notion.
Now I can write the version of my square, which we require to be a limit or

colimit diagram. This is equivalent but easier to generalize.

TΣ

$$❏
❏❏

❏❏
❏❏

❏❏
❏

zzttt
tt
tt
tt
t

TL1

�� **❚❚❚
❚❚❚

❚❚❚
❚❚❚

❚❚❚
❚❚❚

❚❚❚
TL2

tt❥❥❥❥
❥❥❥

❥❥❥
❥❥❥

❥❥❥
❥❥❥

❥❥

��
TX

��

TY

��
LX[k]

�� ))❚❚❚
❚❚❚

❚❚❚
❚❚❚

❚❚❚
❚❚❚

LY [k]
��uu❥❥❥❥

❥❥❥
❥❥❥

❥❥❥
❥❥❥

❥❥

LL1
[k]

$$■
■■

■■
■■

■■
LL2
[k]

zz✉✉
✉✉
✉✉
✉✉
✉

LΣ[k]
so composition, I can put things down like this

X4 L34
//oo X3

L14

OO

��

Σ

OO

��

oo // L23

OO

��
X1 L12

//oo X2

then a fact is that Lag
(∞,d)
k (∗,∗) ≅ Lag

(∞,d−1)
k−1 and this gives us the symmetric

monoidal structure.
We can do this for higher levels, we get more complicated versions of the same

correspondences and then we get a bigger diagram to ask to be a colimit, but it’s
the same idea.
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Getting back to our functor, what will our strategy be? We can decompose the
functor into simpler ones.

We wanted to start with Bordord and end in Lagrangian correspondences. So first
we cut our bordism, and I’ll explain in a minute, to get cospans of nice spaces (I
won’t go into the details of which spaces). So I have a cutting functor that cuts
wherever things are possible, rememebering the intersections along which I glued.
[pictures]

The next thing is, I take this functor ( )B to derived stacks, and then map into
Y , which makes things into spans

Bordord
“cut”ÐÐÐ→ Cospan

[]
d (Sf) ( )BÐÐÐ→ Cospan

[]
d (dStcpt) (Map( ,Y ))ÐÐÐÐÐÐÐ→ Spand(dSt /A2

cl(t)) ⊃ Lag(∞,d)k

and we can lift. Let me make another less trivial example [picture].
Let me give some sort of proof, not in the fully extended case but maybe you

can convince yourself that some similar argument should hold. We start with

M

∂0M

<<②②②②②②②②
∂1M

bb❊❊❊❊❊❊❊❊

and we want that

L =Map(MB , Y )
))❚❚❚

❚❚❚
❚❚❚

❚❚❚
❚❚❚

uu❥❥❥❥
❥❥❥

❥❥❥
❥❥❥

❥❥

X =Map((∂0M)B , Y ) Y =Map((∂1M)B , Y )
is a Lagrangian correspondence.

So now I want to say something about my orientations. I clim that

MB

(∂0M)B

::✉✉✉✉✉✉✉✉✉ (∂1M)B

dd■■■■■■■■■

has a relative d-orientation. The boundary guys (∂1M)B and (∂1M)B have (d−1)-
orientations. That means say ∂0M has a fundamental class [∂0M] ∈Hd−1(∂0M,k),
so that

∩[∂0M] ∶ C∗(∂0M)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Γ((∂0M)B ,O(∂0M)B

)

→ k[−(d − 1)]

gives a non-degenerate pairing (call (∂0M)B by the nameN0) Γ(N0,E)⊗Γ(N0,E
∨)→

Γ(N0,ON0
) [N0]ÐÐ→ k[−(d − 1)] and nondeneracy here comes from Poincaré duality,

for any E a perfect complex
This was absolute and you can probably guess what it means to have a relative

d-orientation.
Now we also know that M in the ordinary sense has a relative fundamental class

in the chains Cd(M,∂M,k), and note that this is the homotopy fiber of the map
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from the inclusion of the boundary and under this map, [M] goes to [∂M]
Cd(M,∂M,k) //

��

0

��
Cd−1(∂M) // Cd−1(M)

the condition is, well,

Γ(MB ,E
∨)

**❯❯❯
❯❯❯

❯❯❯
❯❯❯

❯❯❯
❯❯

tt✐✐✐✐
✐✐✐

✐✐✐
✐✐✐

✐✐✐
✐

Γ((∂0M)B ,E∨)
��

Γ((∂1M)B ,E∨)
��

Γ((∂0M)B ,E)∨[−(d − 1)]
**❯❯❯

❯❯❯
❯❯❯

❯❯❯
❯❯❯

❯❯
Γ((∂1M)B ,E)∨[−(d − 1)]

tt✐✐✐✐
✐✐✐

✐✐✐
✐✐✐

✐✐✐
✐

Γ(MB ,E)∨[−(d − 1)]
and now relative Poincaré duality tells you this is a pullback pushout square. This
pattern continues as you move up in levels.

So one more thing I should tell you, for L =Map(MB , Y ), then TL1x = Γ(MB ×
SpecA, ξ∗TY ) where x ∶ SpecA → L or equivalently ξx ∶MB × SpecA → L. [missed
some].

In the last minute I will, as promised, explain an outlook. Damien mentioned
this morning, these are the semi-classical TFTs. These should be the starting point
for some quantization. In general there is no hope for functorial quantization, but
there’s something we can do. We got

Bordord → Lag(∞,d)x

and there’s another fully extended TFT

Bordfrd → Algd

and here given any object in the target (in either case) we get a fully extended
TFT. The target category in the second case has objects Ed-algebras, morphisms
bimodules, 2-morphisms bimodules of bimodules in a certain sense, up until d, and
if we take d = 1 we get the Morita category here. This is the thing you might hope
to quantize to.

This is a non-existent thing, but you might want a quantization functor from
Lagk. This will not work, it’s clear. But in the linear case there’s something you
can do.

Now in Lag
(∞,d),lin
d−1 my objects are (d − 1)-symplectic differential graded vector

spaces, morphisms are linear Lagrangian correspondences. If we start at the bottom
we should get a Weyl algebra and Foch module for the correspondences. There’s a
nice procedure to generalize this in some way.

Maybe to give one last ingredient, the thing we built in Ed was by using factor-
ization algebras. We saw the definition yesterday in Brian’s talk. If you take R2, we
have a functor from open sets in R2 to our target category (chain complexes) and
structure maps, multiplications, and the nice thing is that Ed algebras are locally
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constant factorization algebras, and bimodules can also be described in such a way,
they are locally constant factorization algebras on a stratified space with a line.

The Weyl quantization can split into two steps, we start with SympVectd−1 and
we first produce a Lie algebra and then a chain complex. We want to land in
Algd(Chk). We can apply Algd throughout to this map, and we should get a map
to this from our linear Lagrangian category. Owen did the bottom case if you do
the objects. For d = 1 he showed on the objects this gives you back the Weyl
quantization that you expect. You should get back the functor that you expect.
I’m out of time, thanks for your attention.

8. Nick Rozenblyum: Additivity for Poisson structures and

quantization

The thing I want to talk about is deformation quantization, the classical problem
of deformation quantization is, of course, you have some Poisson algebra and you
want to quantize it to an associative algebra, that’s the basic problem, and the
first variation on this that I want to describe is to follow Losev’s suggestion from
yesterday and rather than working with strictly Poisson and associative algebras,
work with homotopical versions thereof. So I want to reformulate to start with a
homotopy Poisson algebra and quantize to a homotopy associative algebra.

So there was this discussion in Losev’s talk about this idea that you should really
give up at least one of associativity or commutativity on the nose. In Chicago where
I live, there’s a tradition of voting early and often, and in that spirit I’ll give up on
both, vote for both. I’ll let everything be up to homotopy.

This question still makes sense, of course, you have to be careful in defining
this problem. In a homotopical setting, in the classical setting, if your Lie bracket
vanishes, you automatically get a commutative algebra.

The rules of the game up to homotopy is that you can’t specify equality, you
need to specify a path, a homotopy. If I make the Lie bracket trivial, you might
think that this gives you a commutative algebra, that’s false.

It’s not true that deforming a homotopy commutative to a homotopy associative
algebra gives you a Poisson bracket. Instead, you have to rigidify the situation
slightly, and the way to do that is the BD1 operad. That’s an operad (introduced by
Ed Segal) over k, really it’s C, over k[[h̵]], and the generators are a multiplication
⋅ and a Lie bracket {,} which satisfy the Leibniz rule and the assertion is that
a ⋅ b ∓ b ⋅ a = h̵{a, b}, so if h̵ = 0, this is Poisson (P1) and if h̵ can be inverted, then
this is exactly associative.

The problem of quantization is to deform a P1-algebra to a BD1 algebra.
This is the right formulation in that setting. That’s a good way of formulating

these things. That’s the classical deformation quantization problem; I’ll explain a
few more and then explain why they are the same problem.

Two other instances of deformation quantization,

(1) BV quantization, so this is a formulation due to Kevin Costello and Owen
Gwilliam, this is the following, start with a P0 algebra. This is the operad,
you have a commutative multiplication and the bracket lives in degree 1,
and they satisfy the Leibniz rule (with the Koszul rule of signs), and Costello
and Gwilliam explain in his book that BV quantization is the problem of
deforming a P0 operad to a BD0 operad, also an operad over k[[h̵]], it
also has generators the commutative multiplication in degree 0 and the
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bracket in degree 1, and then you say d(⋅) = h̵{,}. So BD here stands
for Beilinson and Drinfeld, and this should be the BV operad, but there’s
already something called the BV operad.

Anyhow, so these sholud look different, BD0 and BD1, these should
look different, although the Poisson parts look pretty regular. This is all
I’ll say about this for now except to say the upshot that all deformation
quantization problems reduce to BV quantization.

(2) Before expanding on that slogan, let me give the second example, which
comes from conformal field theory. I have to apologize a bit, because I’m
probably only talking about half a conformal field theory, I’m talking about
vertex algebras, and there’s a notion of Poisson vertex algebras, and you
quantize those to vertex algebras, and if you’ve seen the definition of a Pois-
son vertex algebra, first of all vertex algebras are complicated by Poisson
vertex algebras are even more complicated. I’ll give a conceptual definition
later.

So this is the goal, three somewhat different looking problems, and there’s a context
in which all of these become the same problem. We’ll have to introduce some
geometry. I’ll introduce a background spacetime, using what is called factorization
algebras. An associative algebra is a factorization algebra on the real line. One
advantage is that you can consider other manifolds, not just Euclidean spaces, and
you can prove things about the algebra using the geometry.

So X is either a manifold or a smooth algebraic variety, corresponding to topo-
logical or algebro-geometric field theories.

We’ll consider factorization algebras on X. Let me try to give an idea of the
definition. The kind of formulation that is relevant here, let me introduce the Ran
space. You glue configuration spaces together so that they become contractible. It’s
the space of finite nonempty subsets of X, there are two cases. If X is a manifold
this is a topological space. I want the minimal topology such that Xn mapping into
it is continuous. If X is a variety there is a natural way to put this into algebraic
geometry.

A factorization algebra on X is a “sheaf” on the Ran space of X together with
coherent isomorphisms A{x,y}, so the fiber over {x, y} should identify with Ax⊗Ay.
I should say what I mean by “sheaf.” I put this in quotes because of our two
contexts. For manifolds I mean a constructible sheaf (with respect to the natural
stratification by number of points of the Ran space). For varieties, instead of
constructible sheaves I want D-modules.

Theorem 8.1. (Lurie) Factorization algebras on Rn are the same thing as En-
algebras, e.g., E1 is associative.

I want to emphasize, everything is up to homotopy, if you insist on particular
models, associative should be A∞ or something. But higher En don’t have good
explicit algebraic models.

Theorem 8.2. (Beilinson–Drinfeld) Vertex algebras are the same thing as factor-
ization algebras on algebraic curves.

This is our entry point into conformal field theory, whether in manifolds or in
algebraic varieties.

That’s the quantum story, but what about the classical story? First let me state
the thing for clarity, the situation in the topological case. There are these operads
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Pn and it looks like, there’s a commutative product in degree 0 and a Lie bracket
satisfying the (appropriately graded) Leibniz rule in degree 1 − n, then you should
quantize this to an En algebra, this is the n-dimensional version of deformation
quantization. I told you this for n = 0 and n = 1. For n ≥ 2, the homology of the
En operad is the Pn operad (this goes back to Arnold and Fred Cohen), and we
can combine these in an ad hoc way, to say that for n ≥ 0, En has a filtration with
associated graded Pn, for n ≥ 2 it’s the Postnikov filtration and otherwise the one I
applied before. Applying Rees to this filtration I get the BDn operad over k[[h̵]],
so this gives Pn by quotienting by h̵ and En over k((h̵)) by inverting h̵.

Theorem 8.3. (Dunn) Ek-algebras and, well, Eℓ-algebras, you can tensor them,
and it’s additive, and so Ek algebras in Eℓ algebras are Ek+ℓ algebras, filtering in
the ground category of Eℓ and in the target, not in Ek.

Theorem 8.4. (R.) This is compatible with filtration.

Corollary 8.1. Ek-algebras in Pℓ-algebras are the same thing as Pk+ℓ-algebras.
This is another reason it’s a good idea to pass to a homotopy version.

Here’s a really weird formulation of Poisson algebras. Up to homotopy, though, a
Poisson algebra is an associative algebra in P0-algebras. Just to give you a sense of
how weird this is, all the interesting stuff, all the stuff is in the associative structure,
the Poisson bracket is all in the associative algebra on the commutative thing, a
sort of trivial P0-algebra.

We saw that associative algebras are the same as factorization algebras on the
real line. So Poisson algebras are the same as factorization P0-algebras on R. Now
we can study factorization P0-algebras on anything, and as long as our P0-algebras
can be valued in other categories, then our problem of quantization reduces to the
problem of quantization of P0 algebras.

The geometric connection will be the key to this proof.
There’s this notion of “coisson algebras” where the “c” is for compound. Now

sheaves on X have two tensor structures, we could call them ⊗∗ or ⊗!. You could
form their exterior product, and that’s a sheaf on the product, and you pull back,
you could take the star restriction or the shreik restriction ∆∗ or ∆!, I don’t know
how familiar these are. If X is an oriented manifold and these are locally constant
sheaves, then these differ by a cohomlogical shift. Then the differ by an orientation
sheaf. The shift is by the dimension of the manifold.

So the notion of a coisson algebra, very roughly speaking, is a kind of Poisson
algebra, you have a commutative multiplication, using the shriek tensor product,
and you have a bracket using the other tensor product. There’s a compatibility
between the two that lets you consider such a thing.

In the relevant example, manifestly, in an oriented manifold these differ by a
degree shift. So coisson algebras on R are P1 algebras, the degrees are built in
using the tensor products.

The second example, Beilinson and Drinfeld’s motivation, is that coisson algebras
on a curve are the same as Poisson vertex algebras. That’s a first reformulation,
although you might argue that’s not any better.

Let me state this part of the theorem.

Theorem 8.5. (R.) There is an equivalence between coisson algebras on X and
factorization P0-algebras on X compatible (I don’t have time to explain) with quan-
tization.
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[Some monkeying with the indexing]
This gives an obstruction deformation theory for Poisson vertex algebras. The

other thing in the last few minutes, I want to describe this equivalence and what it
says about the AKSZ/PTVV construction. So far I was talking about Pn algebras,
but you can globalize and talk about shifted Poisson structures and derived stacks.

Before I do that, let me say this: we’re going to look at more interesting back-
ground spacetime. If A is an associative algebra, well, let me say a BD1-algebra,
a deformation quantized P1-algebra, nothing necessarily homotopical. The conse-
quence is that we obtain from A a factorization P0-algebra (I said, a BD1-algebra
is a factorization BD0-algebra on the real line. Then we can put it on the circle)
on the circle. Then we can take the factorization homoolgy of A along the circle.
This is H∗(Ran(S1),A). Because A is a factorization BD0-algebra, this naturally
becomes a BD0 algebra. Let’s look at what it is. There’s another name for this,

∫ 1
S is Hochschild homology HH∗. This is something like the Hochschild chains for
me because HC looks cyclic. So HH∗(A/h̵) should be Poisson, and this is the ring
of functions on the derived mapping space from the circle to SpecA mod h̵. So this
is OMaps(S1,Spec A/h̵). If we have a commutative factorization algebra, forgetting
to Poisson and then forgetting the Lie bracket, then a theorem of Beilinson and
Drinfeld says that then factorization homology on a compact space is the ring of
functions on the derived mapping stack.

So the upshot is that a BD1-quantization, deformation quantization of A gives
a BD0-quantization of HH∗(A). This is a geometric reformulation of a known
statement in deformation quantization, this computes trace in deformation quanti-
zation.

Just to give an example, suppose A = OT ∗Y for Y a smooth variety. I guess first of
all, if Y is a smooth variety then Maps(S1, T ∗Y ) is identified with T ∗[−1]Maps(S1, Y ),
this comes with a −1-shifted symplectic structure and a fact in this context due to
Costello, although in the usual BV formalism this is the beginning of the sub-
ject, is that equivariant quantizations of T ∗[−1]Maps(S1, Y ) is the same thing as
(projective) volume forms on Maps(S1, Y ) which is the same thing as (projective)
differential forms on Y .

So this implements the trace function, and so this volume form turns out to be
the Todd class (Markarian).

Let me give a few more examples. If you take the next level up, study maps from
an elliptic curve, factorization algebras there, then for quantization to exist, you
need a trivialized second Chern character, and this quantization gives the factor-
ization version of chiral differential operators and following through the version of
this trace construction gives the Witten genus. Doing this for [unintelligible]gives
B-model operations.

The last thing I wanted to point out is that this gives a kind, this is like a
local-to-global version of the AKSZ construction. If you do [unintelligible]you get
something P (m − n) where n is the dimension of the manifold. In this version,
start with X an oriented “manifold” then you can form, and Y is a shifted Poisson
target, then you can form a local version of this Maps, there’s a factorization space,
I hope it’s not confusing, I passed from algebras to factorization objects over the
Ran space of X. It means that the fiber over two disjoint points is the product of
the fibers. In this case, this space has a shifted Poisson structure, the factorization
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space, and the shift is the dimension of X. When X is compact, taking sections
gives the same shifted Poisson structure. I’ll stop here. Any questions?

9. January 13: Alastair Hamilton: Noncommutative Geometry and

the BV–formalism in moduli spaces of Riemann surfaces

[I do not take notes on slide talks]

10. Branislav Jurco: Operads, homotopy algebras and strings

Thank you very much for the invitation and the opportunity to give the talk.
The talk is based on some work done together with M. Doubek and K. Münster.
What I would like to talk about is how homotopy algebra appears in string field
theory and how it actually, how the construction of string field theory of Zwiebach
can be reinterpreted in the language of operads.

Essentially, the setting is that we start with a modular operad O, I hope to
explain what it is, and then take the Feynman transform FO and get a twisted
modular operad. Then what Zwiebach does is takes an appropriate moduli spaceP̂ and look at chains on this moduli space, and you can read off, he is secretly
equipping the space of chains with the structure of a twisted modular operad,
and what he does, what he calls the decomposition of moduli space is actually
a morphism of these two twisted modular operads. Then there is another map of
twisted modular operads. You have your Hilbert space in conformal field theory, and
you can look at the endomorphisms of this state space, and this is again a twisted
modular operad, and the arrow C∗(P̂) → EV is what you could call TCFT. then
this gives an arrow FO → EV . In principle any string field theory [unintelligible]

FO
algebra

##●
●●

●●
●●

●●
●●

decomp. mod. space.// C∗(P̂)
TCFT

�� EV
So let me start, look at the corolla with genus, with n labelled legs

n

0

and you can join legs and contract edges
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(G1, n1) (G2, n2) (G1 +G2, n1 + n2 − 2)

↦
a b

and for ξab:

a

b

↦
(G,n) (G + 1, n − 2)

So what sort of structure do you have for P? You have maps P(ρ) for permuta-
tions, you have composition maps a○b, and you have maps ξab to contract. What
should this satisfy? You have

(1) a ○b (X ⊗ Y ) = (−1)∣X ∣∣Y ∣b ○a (Y ⊗X)
(2) P should be equivariant and compatible with a○b and ξab
(3) ξabξcd = ξcdξab
(4) starting with two different corollas with a and c on one and b and d on the

other, you can do join and then contract in a couple of ways

ξabc○d = ξcda ○ b

(5) If you have two corollas with a, c, and d on one, you can first join and then
contract or vice versa,

ξcda○b = a ○b ξcd

(6) associativity if you have three corollas

So this is roughly a definition of a modular operad. [missed something about G = 0]
Let me give some examples.

(1) So take Mod(Comc), this is coming from Riemann surfaces, you have a
single corolla for every g and n, then your symmetric action is trivial, the
gluing is also trivial, there’s nothing to describe.

(2) The next one is the classic open strings, Assc cyclic associative, so you have
g = 0 and n leaves. Open strings have only cyclic symmetry, so you get all
the cyclic orderings, this is the generators of your vector space, and the
action of the permutation group acts by permutation of the legs. Now the
circle operation a○b, I can use cyclic permutation to put a and b in the first
place, so

a ○b ((a, x1, . . . , xm))⊗ (b, y1, . . . , yn)↦ ((x1, . . . , xm, y1, . . . , yn))
(3) so the next example is the modular version Mod(Assc), so now I should

have an arbitrary number of boundaries and also boundaries with no open
insertions. If I have a corolla, I have G = 2g + b − 1, and I have [unintelligi-
ble]as my generators.
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So in this case I would be looking at

a ○b (((1))⋯((a, x1, . . . xn))⋯((k)))
⊗ (((k + 1))⋯((b, y1, . . . , ym))⋯((N)))

↦ (((x1, . . . xn, y1, . . . ym)), ((1))⋯((N)))
and

ξab (((1))⋯((a, x1, . . . xk−1, b, xk+1, . . . xm))⋯((n)))↦ (((x1, . . . , xk−1))((xk+1, . . . xm))((1))⋯((n)))
so that’s my operations. It takes some work to prove that this is a modular
thing. that is another example.

Since I mentioned superstring, for example in type II superstring theory, what you
can use is a kind of modular analogue of a colored version of the cyclic commutative.
You can imagine it would be the same as Mod(Comc) except now you have four
colors.

These are like NS-NS, NS-Ramon, Ramon-NS, and Ramon-Ramon, your colors,
and then your symmetric group action should not interchange different colors.

This was about modular operads but maybe now I can give you a rough idea
of the Feynman transform, but before I do that I should say something about a
twisted modular operad, where the a○b and ξab relations get some additional signs.

The endomorphisms are twisted because the pairing is degree −1 for the sym-
plectic form. So right, maybe now I can say what the Feynman transform is, so I
have to tell you what I associate with a corolla, for a corolla with n legs and genus
G, I associate a decorated graph with n legs and genus g, what does it mean? I
have some graph, always some stability condition which I didn’t mention, earlier I
needed to say this 2(g − 1)+n > 0. Now we have this for every vertex. Each vertex
has a genus, and the genus is the sum of the topological genus of the graph plus
the genus of every vertex.

So I have genus g and n-leg graphs, and we cut it into vertices, and decorate
such graphs, for each edge, say here I have five edges, and I take a Grassmannian
variable for every edge, e1∧⋯e5⊗P1⊗P2⊗P3, these are elements, and since I have,
if I cut my edges, I have this vertex [picture] with five legs, and so then if I label
them, this, I know what I can associate to a corolla with genus g1 and these five
legs, so I have an element in the dual space of that. This is what my prescription
associates to a corolla.

The operation is quasifree, just joining graphs. But what makes it nontrivial is
you have a nontrivial differential on it. So just graphically, you think of all possible
ways to split the corolla to give something with one internal edge, which I do with
circle operations. [pictures]

I can also add loops to the differential, which I do with ξab
So an example is EndV , you need V a differential graded vector space and a sym-

plectic form ω of degree −1 compatible with d, and then P(n,G) =Hom(V ⊗n,C) =EV (n,G) and then a○b and ξab are just contracting inputs with ω. In the colored
version you just have different pairis. The Q is some subspace of the state space
and ω is the [unintelligible]pairing with insertions.

I should have said, trivially you can combine your modular Com and Ass to a
two-colored modular operad I’d call quantum open-closed.

So algebras over FP are just morphisms FP → EV , the algebras with underlying
vector space V .
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There is a very nice theorem due to Barannikov which gives a nice description of
an algebra over the Feynman transform, this is equivalentto m(C,G) in P (C,G)⊗EV (C,G), and I take the invariants with respect to the symmetric group. This
should satisfy some condition in order to define an algebra, and first of all, we have
a differential on our modular operad induced from V , and a differential induced by
by P , in our examples this was always trivial. One is from the left and the other
from the right, and I can apply this

dEV − dP´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
a

m(C,G) = (ξab)P ⊗ (ξ)EV´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∆

m(C ∪ {a, b},G − 1)+
1

2
∑

C=1∪C2,G1+G2=G
(a○b)P ⊗ (a○b)EV´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

{,}

(m(C1 ⊔ {a},G1)⊗m(C2 ⊔ {b},G2)

and this is like (P , d,∆,{,}) make a differential graded Lie algebra.
You can collect together these m into a generating function. You have a genus

zero thing, you have here a solution to the quantum master equation dS + h̵∆S +
1
2
{S,S}. Then you have a solution to a non-commutative Batalin–Vilkovisky master

equation.
Now let’s start to compare it with physics, do I still have some time left? We’re

just going to write this BV equation, since we’re working in characteristic zero, if

I take (P(n,G)⊗EeV (n,G))Σn I can identify invariants and coinvariants, taking
this to ((P(n,G)⊗ V #⊗n))Σn

via

∑pi ⊗ψi ↦∑
i

∑
I

ψi(aI)(pi ⊗Σn
φI)

where I have a basis ai for V and φi in V #, and aI = ai1 ⊗⋯ain , and I can just use
this and look at what the master equation gives, and I’ll show you on examples.
So this φ is the string field. If you are in the Mod(Comc) case, then S under this
mapping is something that lives in the symmetric algebra of V #[[h̵]], and this is

S = ∑
n,G

h̵G

n!
∑
I

fGn (AI)φI
, the sum over multi-indices, and these are graded symmetric. The other way is
that you can permute the products of φI and you have the graded commutative
product in φ, using these indices. There you have a product, this is the usual
Batalin–Vilkovisky equation. This is the case of closed string field theory.

Things become a bit more involved in the Ass case but what happens now you
can imagine. I’d call Mod(Assc) things quantum A∞ algebras, now

S =∑ g, b, m⃗h̵G
1

b!

1

m1⋯mi

fg,b(aI1 , . . . aIb)φI1⋯φIB
and now aIi is symmetric, graded, with respect to cyclic permutations within the
boundary and permuting the boundaries. You can imagine what happens if you
combine the commutative with the associative.

I don’t know if other actions of symmetric algebras would be useful for things,
here you just have Com and Ass. I erased my diagram of operads, but I guess
the same basic statement should be true for a quantum field theory, but you put
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a different thing, graphs, metric, tropical, it should be related of course to the
[unintelligible]approach to quantum field theory.

11. Ben Ward: Gravity algebras as obstructions

[I do not take notes on slide talks]

12. Jesse Wolfson: Higher determinants and double loop groups

This is joint ongoing work with J. Kaad and R. Nest.
The goal here is for the classical theory of loop groups, there’s a really rich

interplay between the representation theory and the operator theory related to
scattering theory or gauge theory on the circle. We know very little for maps of
any manifold of dimension greater than one into a Lie group.

Let me remind you of the one-dimensional story. I’ll think of G as a Lie group
compact or its complexification). So the loop group LG is smooth maps S1 → G.

Then there’s a central extension L̃G by C×, and this arises from the restricted
general linear group, the master group GL∞ whenever you have a central extension,
and L̃G arises from pulling back G̃L∞.

Typically we’ll be considering a Hilbert space, and have in mind L2(S1,C),
equipped in this setup with a polarization H+ ⊕ H− and H+ will be the hardy
space H2(S1). We have MA = {A ∈ L(H)∣[A,π+] is Hilbert–Schmidt}. Then GL∞
is the units of this algebra. This is central to a number of things, and this is
the starting point for investigations I want to move to higher dimensions. The
animating question of this project is, if X is a manifold of dimension greater than
1, what can we say about smooth GX .

It’s been known for some time that if G is simple, then any central extension of
GX basically arises by pulling back the Kacs–Moody extension of the loop group
for some f ∶ S1 → X. But higher central extensions are much richer. This goes by
an AKSZ construction where if we consider a class in, say H5(BG,O×), then we
can do this transgression construction,

X ×BGX
ev∗ //

��

BG

BGX

and you can consider ∫X ev∗ ω ∈ H3(BGX ,O×) and its known for a class here you
can associate a higher central extension. This is a group up to homotopy with fiber
[unintelligible]lines, 1→ BC× → Ĝ×q → G× → 1.

So the goal is to define L∞,∞ ⊂ M∞,∞ ⊂ L(H) and give an operator theoretic
construction

1→ BC× → G̃L∞,∞ → GL∞,∞ → 1.

As differential geometers we can do smooth loops; as algebraic geometers we can
do formal loops. It’s known recently, some things about operator theory for formal
loop groups.

Let me say a little more in one dimension, bring out the operator theory a little
more, and then turn to two dimensions.
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The basic 1D story says, we have H equipped with a polarization H+ ⊕H− and
we’ll look at invertible operators such that the commutator with π+ is Hilbert–
Schmidt. I’ll use the notation of these Schouten ideals.

(1) First off, if you have two operators in the master group then the operator

you get by projecting BH+ ABÐÐ→ AH+ is Fredholm.
(2) In this setup we also have that the commutator of these translates of this

projection, this commutator [Aπ+A−1,Bπ+B−1] and Aπ+A−1−Bπ+B−1 are
L2.

As consequences

(1) there’s a holomorphic line bundleD → GL∞×GL∞ withDA,B = det(BH+ ABÐÐ→
AH+)

(2) Due to Carey–Pincus there’s a torsion isomorphism τ ∶ DA,B ⊗ DB,C ≅Ð→
det(CH+ ABCÐÐÐ→ AH+) nad there’s also a perturbation isomoprhism ρ from
this to DA,C .

Just to say off the bat, these isomorphisms have really nice properties.
The resulting map DA,B ⊗ DB,C → DA,C is holomorphic in A, B, and C, is

associative, and is natural with respect to multiplication by GL∞.
Then you can build a C-linear category in complex manifolds C which is going to

give us this central extension. The objects are {Aπ+A−1∣A ∈ GL∞} and morphisms
will be D ↦ GL∞ ×GL∞ and ρ ○ τ as composition. And we see GL∞ acts on C.

Observe

(1) This category is a C×-gerbe, that is, anyA givesBC×
≅Ð→ C by [unintelligible]↦

A

(2) (Brylinksi) If G acts on X then we get 1→ C× → GX → G→ 1, and

(3) in our case G̃L∞ ≅ (GL∞)C .
A lot of this is encoded in τ and ρ. A lot of this [unintelligible]is kind of deep.
There’s a theorem that computes the higher energy limit of Toeplitz operators on
Hardy space, we only look at this on the first n eigenvalues, and let n get large.
Using a careful study of the perturbation isomorphism you can give a good answer
to that.

All of this in the background is a noncommutative differential geometry per-
spective. We know that this is essentially a one-dimensional story from Connes.
The basic example is the circle L2(S1,C) with its’ diract operator idθ and a basic
non-example is L2(T2,C) with π+ = χ[0,∞]D/.

Algebraic geometry is going to be our guide. Let G be an algebraic group,

reductive and let’s say affine. A close cousin to GT
2

will be the formal double loop
group G((t1))((t2)), which if this is a matrix group, you can think of matrices with
entries two variable Laurent series. Then if V is a G-representation, then we can
split V ((t1))((t2)) ≅ V∞,+⊕V∞,− where this is V ((t1))[[t2]] and V ((t1))[t−22 ]. The
operator theory here is increasingly well-understood, building on Tate, Beilinson,
Yekutieli, Braunling–Groechenig–W. Let me say I started in smooth loop groups
talking about AKSZ, and there’s a nice paper of Pavel that says that Weyl invariant
forms on the [unintelligible]lattice, cubic ones, classify not just extensions of the
formal double loop group but also the third [unintelligible]K-theory sheaf, which is
richer. So we have some idea that this should have some chance to have some good
stuff going on.
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So Malg
∞,∞(R) is ϕ ∈ EndR(V ((t1))((t2))) such that for all i and j, there is a

k > j and ℓ < i such that

tℓ2V∞,+
// tj2V∞,+

ti2V∞,+ ϕ
//

⊂

OO

tk2V∞,+

⊂

OO

such that ϕ̄ ∶ ti2V∞,+/tℓ2V∞,+ → tk2V∞,+/tj2V∞,+ is continuous.

So we can construct G̃Lalg
∞,∞ by analogy with [unintelligible].

So we construct a 2-category Calg such that

(1) the choice of A ∈ Calg gives B2Gm
≅Ð→ Calg taking ∗ to A

(2) GL∞,∞ acts on Calg, so by Brylinski, we have

1→ BGn → G̃Lalg
∞,∞ → GL∞,∞ → 1

The objects are A ∈ GL∞,∞.

Theorem 12.1. (Braunling–Groechenig–W.) for A and B in GLalg
∞,∞(R) there

is a Z/2-graded topologiacl R-module DA,B which is smothing like the index of

BV∞,+
ABÐÐ→ AV∞,+ (up to diagonal summands)

So D±A,B ≅R R((t)) and there’s a canonical equivalence DA,B⊕DB,C ≅Ð→ DA,C and
the assignment A,B ↦ DA,B is natural with respect to multiplication by elemnts
in our group.

For fields, if we chose R a field, the knowledge was in the air for a long time.
Our contribution was to figure out how to do this in families and still retain control
of the operator theory.

For every pair of objects in this two category, we need a 1-category M(A,B),
which will be given as a pair of automorphisms, one on the positive part and one on
the negative part, Autcts(D+A,B) ×Autcts(D−A,B). If you have two such operators,

there exists an R-line dϕ,ψ for any D±A,B ≅ R((t)) so that

dϕ,ψ ≅ det(ϕR[[t]] ϕψÐÐ→ ϕR[[t]])
This allows us to define our 2-morphisms

HomM(A,B)(ψ±, ϕ±) = dϕ+,ψ+ ⊗ d∨ϕ+,ψ+ .
Then this is a 2-category, you can check for yourself it’s a two-gerbe of the appro-
priate type and GLalg

∞,∞ acts on it.
That sort of gives us our construction.

(1) the composition of one and two-morphisms encode baby analogues of the
torsion and perturbation isomorphisms.

(2) At the level of sets, for G = GLn, consider the subgroup G of the smooth
double loop group whose terms are meromorphic in the second variable,
whose coefficients are meromorphic functions on the disk,

Aij = ∑
n≥N

fn(θ1)θn2 , fn(θ1) meromrphic on D

and then we get a discrete 2-extension:

1→ BC× → Ĝ → G → 1.
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And if you switch from t-adic to C∞ this turns out to be continous (this is
more delicate but checks out)

Some problems:

(1) Smooth double loop groups are much more delicate. Pushing through con-
tinuity might work but it’s not ultimately going to be the right way to
consider this problem.

(2) Our class of operators is far too restricted. We have fewer operators, but we
want something on the full set of operators on Hilbert space. From Connes
we know we’re missing lots of operators.

(3) You could ask about a surface other than the 2-torus.

The third is the least of our problems. The setup we expect is what Connes called a
[unintelligible]Fredholm module, and locally, all these look like products L2(X),D/
so products plus gluing gives us this last part.

This is a heuristic for going from the second to the third. So let me end by
discussing the current status.

For these first two problems take the formal case as a model. So I want to
combine this with 3-summable Fredholm modules. I should put up a definition
here, you have a C∗-algebra A and you have a Hilbert space with an idempotent(H, F ) with F 2

= 1 and you require that for all a ∈ A, that [a,F ] is in the third
Schouten ideal L3, they’re cube summable.

We want to consider things in practice, F will be built from the spectrum of
an unbounded operator. We’ll consider product Hilbert spaces equipped with an
operator D/ which decompose as D/1⊗1+1⊗D/2. Consider E(H,D/) = {A ∈ L(H)∣A−
D/−1AD/ ∈ L3}.

Now we have two families of idempotents {Pa} and {Qb} where these are bounded
perturbations of the projection onto the spectra of D/1 and D/2 respectively.

Now construct CH with objects {Qb} and let one-morphisms (Qa,Qb) be pairs

P = (Pker, Pcoker) where Pker acts on the kernel of (QbH QbQaÐÐÐ→ QaH). Then for
P and P ′ we have FP,P ′ and two-morphisms will be det(FP,P ′). This is work in
progress, the analysis isn’t pinned down, but with tweaking this should constrain
our choices and guide us to a set of operators.

13. January 14: Sam Gunningham: Categorical harmonic analysis on

reductive groups

Thanks for the invitation. It’s the last day and it’s the morning after the con-
ference dinner so I’ll start with something gentle. My toy example is gauge theory
for a finite group.

How does this go? If you have Γ a finite group, then I can consider MΓ(Σ);
here Σ is, say, a topological space and MΓ(Σ) is the space of Γ-local systems on
Σ, maps from π1(Σ,Γ)/Γ, modulo conjugation. This is the correct formula if Σ is
connected; otherwise I could take functors from the fundamental groupoid to the
classifying space of Γ.

By quotient I mean “take the action groupoid” so this is a groupoid, and as long
as the fundamental group is finitely generated, this is a finite groupoid, that is,
it has a finite number of isomorphism classes and a finite automorphism group of
each.
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Given any finite groupoid G, we can define the size of G, denoted #G, to be the
number of objects scaled by automorphisms.

∑
x∈Ob(G)/∼

1

∣Aut(x)∣
so the size ofMΓ(Σ), takes the size of the space of homomorphisms and dividing
by Γ, ∣Hom(π1Σ,Γ)∣∣Γ∣
and the case we’re interested in, Σ is a closed oriented surface, and in that case,
thisMΓ(Σ), this fundamental group has 2g generators and one relation. So I get
2g elements of Γ satisfying that relation,

MΓ(Σ) = {(a1, b1, . . . , ag, bg) ∈ Γ2g ∣[a1, b1]⋯[ag, bg] = 1}/Γ.
There’s a really nice formula for this due to Frobenius, an early application of
character theory.

Theorem 13.1. (Frobenius)

#MΓ(Σ) = ∑
V ∈ Γ̂´¸¶

irreps of Γ

(dimV

∣Γ∣ )
χ(Σ)

This is counting Γ-bundles on a closed surface, there are things you could do for
punctures, with symmetric groups these are Hurwitz numbers, so this is counting
those.

How can we derive this formula? I want to present a modern formulation.
There is a topological field theory (a functor from a bordism category to a

target category, I’ll explain in detail later, it eats topological spaces and spits out
invariants) which to a closed surface Σ gives this number

ZΓ(Σ) =#MΓ(Σ).
The key to understanding is cutting and pasting, so we want to understand what
happens with a manifold with boundary. Associated to Σ with boundary ∂0Σ and
∂1Σ, I get a span (induced by restriction)

MΓ(Σ)
r1

&&▲▲
▲▲

▲▲
▲▲

▲▲

r0xxrrr
rr
rr
rr
r

MΓ(∂0Σ) MΓ(∂1Σ)
and we’ve seen similar things in lots of other talks. This is nice because everything
actually works.

So these are my spaces of fields and my size function is like my path integral.
So I want to take a function on the boundary, pull back and then push forward, to
get a map

C[MΓ(∂0Σ)] (r1)∗(r0)∗ÐÐÐÐÐÐ→ C[MΓ(∂1Σ)]
Let me remind you, a Γ bundle on the circle is a monodromy, up to Γ, this is the
adjoint action of Γ on itself,MΓ(S1) = Γ

Γ
so C[MΓ(S1)] = C[Γ]Γ.
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So pushing forward is integration along the fibers, with this measure I just de-
fined. If Σ has no boundary at all, I get a point on either side and I just get a map
from the complex numbers to themselves.

I shouldn’t spend too long on this as you’re all familiar with it. I can look at
the pair of pants, the cup, the cap and so on, and I get a commutative Frobenius
algebra, and it’s a familiar one, C[Γ]Γ, these numbers are determined by the data
of this Frobenius algebra. The representation theory tells us the structure. It’s
also semisimple, it has a basis of idempotents eV for V ∈ Γ̂, and that determines its
structure as an algebra. I need to tell you the trace of each idempotent. The trace

of eV , these are almost the characters of V , I believe it’s (dimV
∣Γ∣ )2. You can say,

there’s an isomorphism between C[Γ]Γ and C[Γ̂] which takes eV to δV . So o each
irreducible representation I associate this number.

Then computing the number is just an exercise in Frobenius algebras, just de-
composing your surface into pairs of pants.

I want to think about this situation by thinking that ZΓ can be refined to a
topological field theory relative to Γ̂, a sheaf over Γ̂. To a closed surface I don’t
have just a number but an assignment of a number to each thing in Γ̂. I don’t get
just a vector space for a circle but a vector bundle over Γ̂.

This isn’t what I really want to talk about, I want an analogous situation where
I replace the finite group Γ with a reductive group.

Okay, so what’s going to happen now? I’ll replace Γ by G, a reductive group over
the complex numbers, and it’d be fine to keep in mind G = GLn(C). ThenMΓ(Σ),
I can still doMG(Σ). Before, this has the same definition, Hom(π1(Σ),G)/G. This
is in the same way a subvariety of a bunch of copies of G cut out by an equation,
modulo the action of G, and I’ll think of this as a stack, this is the character stack.
You could call it the Betti moduli stack of G-local systems modulo Σ.

So before I could take a volume of this finite groupoid, in the finite group case.
In this case, at least naively, G is noncompact so it won’t make sense to take the
volume of the group. There’s a version for a compact group, we were talking about
this yesterday, there’s something you can do, described by Witten, I think it was
called 2D Yang–Mills, then take the topological limit, this has the same formulas,
that’s a nice story but I’m not going to talk about it.

What I’m going to do is replace the size of MΓ(Σ) with the Borel–Moore ho-
mology HBM

∗ (MG(Σ)). Just like size is additive with respect to a decomposition,
Borel–Moore has a long exact sequence for a decomposition of your space, so that’s
some kind of analogue.

Let me at this stage mention a different approach, taken by Hausel–Rodriguez-
Villegas, and other collaborators at different stages. What these guys do is count
the points ofMG(Σ) over a finite field Fq. They use the Frobenius formula I just
mentioned for G(Fq) and G is always like GLn or SLn or whatever. They use all
type A together, do a bunch of combinatorics. They are using the character table
of GLn(Fq) to say something about the Euler characteristic of [unintelligible]. The
philosophy is that the number of Fq points is related to the complex homology.

Computing that character table in general often requires you to go to geometry.
One way is due to Lusztig that uses character sheaves on the corresponding algebraic
group. In some sense I want to circumvent the middleman and always work in the
categorified setting.

[some questions about history]
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For the symmetric group, maybe these formulas are due to Hurwitz a little
earlier. I also should have mentioned, Dan Freed and also Dijkgraff–Witten based
on Migdal (1975) for finite groups. The way I’ve expressed it here I learned from
papers of Dan Freed.

I have no particular agenda so feel free to keep asking questions.
Before, ZΓ was a functor from the bordism category of two-manifolds to vector

spaces.

Proposition 13.1. (Ben-Zvi–G.–Nadler–Oren) There is a topological field theory
ZG which assigns to a surface HBM

∗ (MG(Σ)) and assigns to S1 instead of the
vector space of class functions, D(G)G, the category of G-equivariant D-modules
on G. These are like class functions for D-modules. I’ll explain in a second.

This is a fully extended TFT. Previously to a point I’d assign maybe modules
for the group algebra. Here to a point I assign D(G), all D-modules on G, with ∗,
before that was an algebra but here this is a monoidal category. The ∗ is convolution.

Let me say more precisely what I mean by this. This will be a functor from
a bordism category Bordor(0,1,2) to Alg(dgCat), the Morita category, with algebras,
bimodules, and intertwiners. There should be an unoriented version as well.

Let me, before talking about D-modules, make some remarks about the propo-
sition. Actually this has been a motivating example for me for a really long time.
The idea of this was taught to me by David Ben-Zvi and David Nadler, we talked
about it a lot. Until recently we didn’t think there really was such a TFT, this is
a little embarrassing, because the monoidal category is not rigid. The philosophy
is if you start with something dualizable enough you get a TFT, and we didn’t
know but then it’s Morita equivalent to something rigid, Harish–Chandra bimod-
ules on G, these are a subcategory of Ug-bimodules such that the diagonal action
of g is integrable, comes from an action of G. This is due to Gaitsgory, written up
in Beraldo’s thesis. This particular statement is being written up with Ben-Zvi,
Nadler, and Oren (a student of Ben-Zvi). Both of these things are equivalent to
a universal Hecke category D(N/G/N) (here for G a reductive group with B its
Borel, this N is the unipotent radical so for G = GLn then Borel is upper triangular
and N is upper triangular with 1 on the diagonal), this is in our forthcoming paper.
This relates the monoidal category to things people are more used to studying in
geometric representation theory.

Let me say some more about D-modules. The easiest example to think about,
and my favorite example, is a torus, the reductive case. So the character variety or
character stack is not very interesting, but it’s helpful to have this example in mind.
So let X be a smooth affine variety over C and DX denote the ring of polynomial
differential operators, for example for X an affine space this is called the Weyl
algebra, this is a deformation of functions on the cotangent bundle. Then D(X)
is the derived category or a dg version of this, D(DX − mod ). I should also talk
about D(X)G which is D(X/G), and if G is an affine algebraic group acting on X,
so this is the G-equivariant derived category.

This kind of thing, this is not the derived category of G-equivariant D-modules
on X. Bernstein and Lands talked about this, also a recent book by Gaitsgory and
Rozenblyum.

Let’s say I have a torus T and for simplicity let’s say it’s C×. Then what’s DTL
we have functions and differentiation, so it’s C[x,x−1, ∂x] subject to the relation[∂x, x] = 1, andso what’s DTxλ? (here λ is in t∗). This is DT /DT (x∂x − λ).
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I meant to mention that, what’s another way of thinking about a DX -module?
it’s an OX -module with an action of vector fields in a compatible way, that’s a
quasicoherent sheaf on X with a flat connection. This DTxλ is a vector bundle
with flat connection.

So generally the story I wanted to tell, I have this function xλ and it gives you
a D-module. If you look at xλ and xλ+1 they give the same D-module, there’s a
gauge equivalence. This only sees the functions up to some gauge equivalence.

Another thing, I can take DT .δ(x−a) for a ∈ T . Then the delta function satisfies
a zero order differential equation DT /DT (x − a).

This is an Abelian group so you expect a kind of Fourier transform. I’m running
out of time, I don’t know how much more I can say. The ring DT , I can think about
it as first C[x∂x][x,x−1], I put this subject to the same relations, but think about
this as a polynomial ring O(t∗) with difference operators, acting by translation by
integers. I can think about this as a quasicoherent sheaf on t∗ with an action of
translation operators.

In other words, D(T ) is equivalent to QC(t∗)Λ with Λ = Hom(T,C×).
As you might expect, well, this thing is sometimes called the Mellin transform,

and here I have a monoidal product given by convolution on D(T ), and on the other
side ⊗ for quasicohorent sheaves. SoD(T ) is a monoidal category under convolution

and I want to say that its spectrum is QC(t∗). This is like Γ̂ from before, the place
that the TFT lived over, it lives over t∗/Λ. The monoidal category I assign to a
point is quasicoherent sheaf on this object. That’s the sort of thing I want to do
but for a non-Abelian group.

Let’s see, what can I do in five minutes. Maybe I’ll just sort of mention the basic
idea of how it’ll work.

For G non-Abelian, I fix a Borel subgroup, like upper triangular matrices in
GLn, and then N is like my upper triangular with 1 on the diagonal, and B/N is
H, my diagonal matrices.

So I’m looking for modules for my group algebra, I want to think of D(G) acting
on, the easiest thing is D(G/B), and I could also twist these, like actions on G/N
with specified monodromy in the H direction. I’ll write this D(G/B)λ. For each
λ ∈ h∗ I get the following:

● Hλ which is EndD(G)(D(G/B)λ)
● eλ ∈D(G)G, an idempotent,
● eλD(G)Geλ are character sheaves of Lusztig, and this is the central [unin-
telligible]
● I get a vector space HBM

∗ (MG(Σ)), and I can consider the “λ-part of it”
and this is just a differential graded vector space.
● there’s actually a TFT ZG,λ that controls all this data. One λ at a time
you get a TFT in this way. These Hecke categories here are more amenable
to studying by the usual techniques of studying monoidal categories in
representation theory, so there’s a hope that these are more computable.

One thing to do is try to compute these invariants, and another is to see if you
can recover the full moduli space from these λs, the spectrum is continuous, that’s
ongoing with Ben-Zvi and Nadler but I’m out of time so I’ll stop here.
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14. Dan Berwick-Evans: Effective field theories and elliptic

cohomology

Thank you, it’s been a great week here, thanks to the organizers.
I want to describe a relation between field theories and homotopy theory, specif-

ically elliptic cohomology. The connection to field theory started, as it so often
does, when Witten made an observation in the 1980s. He said you should think of
elliptic cohomology as being roughly related to the S1-equivariant K-theory of the
loop space, that’s like vector bundles on loop spaces, that’s like quantum mechanics
on the loop space, and that’s like a 2D quantum field theory.

I just want to motivate this by playing games between these two. One nice thing
about K-theory is everyone has their own way to think about it. I’ll connect real
K-theory and the universal elliptic cohomology TMF . To say what TMF is, you
should say something about derived algebraic geometry.

How do you get KO? The multiplicative group has a Z2 action, and so you can
think of complex K-theory as sitting over a point mod Z2, and then you have real
K-theory. Similarly, for TMF you do the same thing but you have elliptic group
laws, and global sections of some sheaf give you topological modular forms. This
story is due to Hopkins and Miller with recent contributions due to Lurie.

Maybe that’s not how you think ofK-theory. Maybe you think of vector bundles.
We don’t know what does this for TMF , and this will be to try to get hints for
what should go in this square.

To continue along, representation theory, equivariant K-theory reads off the
representation theory of a group. Let me do complex with the caveat that you can
deal with the Z2 action.

The representation theory on TMF is a little spooky [missed some] and there’s
a 2-group representation interpretation that is even spookier.

For analysis, what we want for the K-theory is twisted Dirac operators. Atiyah–
Singer tells you how to compute the index of a dirac operator [unintelligible]. Wit-
ten’s suggestion is to compute the Dirac operator on the loop space. This isn’t
meant literally, there seems to be something like the Dirac operator on the loop
space and if you make it precise you land in physics.

(derived) alg. geo. diff. geo rep. theory
KO formal multiplicative group vector bundles RepG ≅KG(pt)
TMF elliptic group laws ? TMF ℓG(pt)→ Repℓ(LG)

analysis physics

KO Twisted Dirac 1d N = 1 SUSY QM
TMF Dirac on loop spaces 2D N = 1 QFT

I’m going to start by talking about modular forms.
They keep giving back, most notably with Fermat’s last theorem.
So MF2k is functions in O(H) such that,

MF2k = {f ∈ O(H)∣f(ac + b
cz + d

) = (cz + d)kf(z); [ a b

c d
] ∈ SL2(Z)}

and I’m not enforcing conditions at ∞, some would call these weak modular forms.
I could also write this as sections of line bundles on a stack, SL2(Z) acting on

the upper half plane,

Γ(H//SL2(Z);ω⊗k) ≅ Γ(Mℓ;ω
⊗k)
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So there’s periodicity, there’s a modular discriminant ∆ ∈MF24 which is invertible
so we have a periodicity

MF●
∆Ð→MF●+24

which will come back in TMF.
Let me say something about q-expansion, we have a map of stacks H//Z →

H//SL2(Z), this takes n ↦ [ 1 n

0 1
] which gives a map MF● → C((q)) where

q = e2πiτ for τ ∈H.
For integral modular forms, I can make MFZ as the pullback

MFZ //

��

Z((q))
��

MF // C((q))

Now let me talk about topological modular forms, first as a ring. These refine MFZ

by a ring spectrum (in the sense of homotopy theory) via a map π∗TMF → MFZ
∗ ,

this is a rational isomorphism but has kernel and cokernel, lots of 2-torsion and 3-
torsion, homotopy theorists go wild for this, and there’s maybe interesting number
theory connections, so an interesting thing to study.

One of the more striking things is what happens to periodicity. It turns out
that ∆ is not in the image of π∗ but ∆24 is and gives a Bott element, i.e., TMF
is 242 = 576-periodic. You’re supposed to think in analogy that real K-theory is
8-periodic. This 576 is much bigger than 8 but we think QFT is more complicated
than quantum mechanics.

So let me talk about a topological version of q-expansion, that was studied
by [unintelligible]. So you can take a generalized Chern character, which goes
TMF → TMF⊗C, and this has a reasonable de Rham interpration. Then you can
evaluate at the Tate curve, and you have a formal neighborhood, and so evaluation
there gives you a map TMF → K((q)), and there’s a compatibility condition that
says if you take the usual Chern character in K-theory, or take q-expanison in
TMF⊗C, I get a map to HC((q)). Life would be very easy if this were a pullback.
I’ll name the pullback, but this is just my name for it, I’ll call it KMF and by
the universal property receives a map from TMF. I’ll try to understand KMF,
TMF⊗C, and hardest, TMF, using field theory.

TMF

%%❑
❑❑

❑❑
❑❑

❑❑
❑

evTate

**❱❱❱
❱❱❱

❱❱❱
❱❱❱

❱❱❱
❱❱❱

❱❱

Ch

��✽
✽
✽
✽
✽
✽
✽
✽
✽
✽
✽
✽
✽
✽
✽
✽
✽

KMF //

��

K((q))
Ch

��
TMF⊗C

q−expansion
// HC((q))
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The big picture of the big picture is that I want to interpret something like this:

{string mflds}

(D)
✉✉
✉✉
✉✉
✉✉
✉✉
✉

zz✉✉✉
✉✉
✉✉
✉✉
✉✉

(C)
⑧⑧
⑧⑧
⑧⑧
⑧⑧
⑧⑧
⑧⑧
⑧⑧

��⑧⑧
⑧⑧
⑧⑧
⑧⑧
⑧⑧
⑧⑧
⑧⑧

σ

''❖❖
❖❖

❖❖
❖❖

❖❖
❖❖

Witten

��❄
❄❄

❄❄
❄❄

❄❄
❄❄

❄❄
❄❄

❄❄
❄❄

{2 − extended 2∣1 −EFTs}
��

// TMF

��{1 − extended 2∣1 −EFTs}
��

(B)
// KMF

��{0 − extended 2∣1 −EFTs}
(A)

// TMF⊗C

There’s one more ingredient, Witten gave something that goes from string manifelds
via quantization of nonlinear SUSY sigma models to the 1 and 0 extended versions.
On the homotopy side, there is the σ orientation in TMF due to Ando–Hopkins–
Strickland. That’s one thing that’s an important aspect of this proposal. Witten
gave the KMF version. I should say this red part was suggested and worked on by
Segal and Stolz–Teichner.

So let me start with a sketch of (A) and (B). So my fields will be maps φ ∶

R2∣1 →M . You have coordinates z and z̄ and some vector fields θ related to ∂̄ and
with this you can write down an action, I’ll do a Lagrangian density; I don’t really
mean to take a non-compact integral

∫
R2∣1
⟨∂zφ, (∂θ + θ∂z̄)φ⟩

For (A), consider energy zero tori, denote this by Φ
2∣1
0 (M) this is a lattice Λ and a

map φ from R2∣1 mod the lattice to M with the condition that the energy is zero.
This looks roughly like a moduli stack of elliptic curves. The odd part maps to

M , this is the odd tangent bundle whose functions are differential forms. So this is
likeMℓ × SMfld(R0∣1,M) ≅Mℓ × πTM

Theorem 14.1. (B.-E.)

O(Φ2∣1
0 (M))/ ∼≅ TMF(M)⊗C

For (B), you can also take a category of energy zero annuli φ ∶ R2∣1/Z → M .

Denote this by Φ
2∣1
1 (M). There’s some compatibility with the tori that you have

before if you cut a torus into annuli. You consider a filtration of finite dimensional
representations and only do geometry on finite dimensional pieces.

Definition 14.1. A 1-extended 2∣1-Euclidean effective field theory over M is a

filtered representation of this category Φ
2∣1
1 (M), called F● ∈ Fun(Φ2∣1

1 (M),Vectfd)
such that

(1) (effectivity) the filtration has increasing energy with respect to the S1-
action on annuli, and

(2) (modularity) the character of this representation gives a function on energy

zero tori, Z ∈ C∞(Φ2∣1
0 )(M).

Let me give an idea about how these look and then state a theorem for you.
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● I have
∞

⊕
n=−N

qnVn

such that ∑an dim(Vn) is an integral modular form, gives a 1-extended
effective field theory over M a point.
● (subexample) the moonshine module, and you get the J-invariant [unintel-
ligible].
● More generally, you could have these sequences with an odd operator (now
they’re Z2-graded spaces), like a cutoff of an odd operator
● More generally, you have vector bundles now, over a space, with a Quillen
superconnection for each n. The modularity condition is no longer an in-
tegral modular form, now the Chern character has to be a differential [un-
intelligible]valued in modular forms.

This matches up with the definition of KMF, you have this agreement, this condition
of the Chern character. Let me emphasize that q is not a formal parameter, an
actual size of a bordism. There’s a lot of geometry behind the scenes. I might not
have time to talk about it but it’s there. The theorem, you can probably guess.

Theorem 14.2. (B.-E.)

{1 − extended2∣1 −EFT s/ ∼} ≅ KMF(M).

I’m flexible about quantization but let me tell you about what I mean. I learned
my ideas from Costello, he’ll tell you they’re older. If I phrase these things as
energy zero fields, there’s a normal bundle to that and you can do perturbative
quantization, let me tell you more about what I mean.

There is an inclusion

Φ
2∣1
∗ (M)

i↪ {all fields}
and you get a normal bundle which I’ll call ν(i), but you get more than that, you get
a linearization of the classical action. Then you get a free field theory. The action
is quadratic. In each fiber we can quantize although things can be interesting in

families. So we get a Φ
2∣1
∗ (M)-family of free field theories. You use determinants,

in fact ζ-determinants, and these are sections of a line bundle, and you need to
globalize this, which is where the string condition comes in.

Now for (C):

Theorem 14.3. (B.-E.) For M oriented and PC
1 (M) = 0 (the first complex Pon-

tryagin class), then a 0-extended fiberwise quantization (ζ-determinant) constructs

a relative volume form on Φ
2∣1
0 (M) such that

C∞(Φ
2∣1
0 (M))

∫ //

��

C∞(Φ
2∣1
0 (pt)) ≅MF

��
TMF(M) ⊗C

σ⊗C
// TMF(pt) ⊗C

so this map commutes by which you can see that σ⊗C takes 1 to the Witten genus
of M .

You’re modifying integration of forms by some function on the stack and that’s
what gives you the integration map on the top.

Finally, for (D), this is in progress but I’m confident it will work out
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Theorem 14.4. (B.-E., in progress) Fer M spin and PC
1 (M) = 0, a 1-extended

fiberwise quantization (a linear geometric quantization) constructs the Witten genus
of M as an integral modular form. The spin property gives you exactly that thing.

Great, I have a few extra minutes.
Let me finish talking about something a little different, talking about something

less obvious from the homotopic side, which is an equivariant version. TMF is
homotopy theory, constructing equivariant extensions is difficult, but from the field
theory point of view, there’s something really obvious to try, gauging your theory.
There are some sophisticated candidates from other points of view, and it would
be interesting to compare them to what this outputs.

Let’s play the game again, starting with a gauged sigma model. Let’s do the
version for G a finite group, the version for compact is way more complicated.

We have our fields principal G-bundles over M with a map to R2∣1. That’s the
same as maps from R2∣1 into the quotient stack M//G. There’s a computation
that’s not totally trivial but it’s a follow-your-nose sort of thing, sub M//G into
the previous theorems and get new ones. We can also twist by α ∈H4(BG;Z).

Theorem 14.5. (B.-E.)

C∞(Φ
2∣1
0 (M//G))/ ∼

is Devoto’s equivariant elliptic cohomology over C. Classes α give twists for this
theory.

Let me mention just one more, the one-extended case.

Theorem 14.6. (B.-E., in progress) 1-extended 2∣1-EFTs over M//F give an equi-
variant refinement of KMF(M) compatible with Ganter’s model of equivariant Tate
K-theory.

Let me mention that KTate
G (pt) contains representation theory of the twisted

Drinfeld double (twisted by α). I hope I’ve convinced you that some of this will
eventually change from red to white.

15. Dev Sinha: Hopf invariants, rational homotopy theory, and

physical integrals

So thanks to the organizers, especially because, I don’t know who misread the
title of the conference, them or us, for me, it’s more like quantum field theory
methods in homotopy theory, just a simple permutation, I don’t know if there’s a
sign we need to introduce.

● I’ll talk about a classical perspective, homotopy and linking invariants, and
we’ll see that
● this is one of many problems where combinatorial descriptions of homology
and cohomology of configuration spaces come into play, and that’s of inde-
pendent interest, because in various cases the Feynman diagrams come up
in the combinatorics of these configuration spaces, really the disks operad.
● I’ll talk about Koszul duality between Lie and commutative algebras, and
● being a little future-focused I’ll focus on Chern–Simons theory, connected
with work that Alberto and Pavel have done and are doing, maybe with
L∞ models,
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● and then what we think of should be the replacement of the Koszul duality
of Lie and commutative, so commutative becomes E∞ and the Lie cooperad
is the rational manifestation of the Goodwillie tower of the identity. At the
end I’ll talk about how I maybe see things as playing out.

The basic question, given f, g ∶ Sn →X, I want to know if f is homotopic to g, let’s
say rationally, after multiplying by some integer.

We can compute π∗(X)⊗Q if X is simply connected (I’ll make that assumption
throughout) as the indecomposables V in a Sullivan model (∧V, d) for X. You
know how many they are, so it’s like doing knot theory, you can make a table, but
then trying to identify something in that table, that’s a different question.

I want to talk about something a little different motivated by work I’ve done in
knot theory.

What’s the first example. If I have [ω] ∈H∗(X), then I can evaluate it

∫
Sn
f∗(ω)

after pulling back. That’s an invariant. If I have two maps they’ll pull back coho-
mologous cocycles, but here’s another example due to J. C. Whitehead (37), this
has many more citations in the physics literature than the math literature. To such
an f ∶ S3 → S2, I think of [ω] which generates H2(S2), and I pull it back to S3, I
get an antiderivative, and then I can make a number

∫
S3

d−1f∗(ω) ∧ f∗(ω)
and Whitehead said this is the Hopf invariant. This tells you if f and g are homo-
topic.

Let me give one more example on similar lines. Let X be a 4-manifold, and W 2

and V 2 in X, with no boundary, and they may intersect, but that can be trivialized,
W ∩ V = ∂T . I’ll take forms on a tubular neighborhood. So take forms ω, ν, and θ
Then I claim that the integral

∫
S3

φ−1f∗ω ∧ f∗ν + f∗θ

is invariant.
So if I look at the preimages of V and W , these are 1-manifolds. Then d−1f∗(ω)

will live on a disk bounded by this preimage. Then around some particular point
of intersection of this with f∗ν you get the concentration of the form d−1f∗ω∧f∗ν.
When I pull back θ it’s concentrated on a point.

When I do this first bit here, by transversality, the preimage of W ∩ V would
be empty, it’s codimension 4. In S3 × I, at some point, there’s a cobordism here,
and the links can unlink, because this is the preimage of W , of V , and that can
happen if four degrees of freedom. But the condition that the boundary of T is the
intersection, that comes in and cancels the term at that point. We have a +1 and
a −1 that come in and cancel. This computes a linking with correction, that’s the
geometry of this story. With a choice of trivialization, you get something invariant.

Okay. In order to iterate this well, you want to keep track of everybody, and
that’s where this language of the Lie operad and cooperad come into play. Let
me tell you, give you a digression, about H∗ and H∗ of the disks operad. This
is well-known to be the Poisson operad, but let me tell you how that works out
geometrically. I have labelled points in the disk, or in Euclidean space, this is
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configuration of three points by Rd, take the product and remove the fat diagonal
where any two points are equal.

An element of the Poisson operad could look like this

[[x2, x4], [x1, x5]]x3
and how does that look as a homology class? It will be the image of a homology
class of a torus. The circles will parameterize angles. So points 2 and 4 will orbit
a midpoint with parameter S1, something similar happens with 1 and 5, and then
the midpoints orbit each other, which is parameterized by the third S1. Then point
three doesn’t get to dance with anyone else. This is a 3-dimensional manifold, and
take its fundamental class and you get this Poisson element.

Let me also tell you about cohomology. This goes back to Arnold, you see these
basic forms wedged together. I’d rather take the numbers and look at them as a
graph.

α14 ∧ α42 ∧ α15

4

��❃
❃❃

❃❃
❃❃

❃

1

@@��������

��❃
❃❃

❃❃
❃❃

❃ 2

5 3

and that’s Poincaré dual to a picture that looks like this

2

4

5

1 3

and the evaluation involves a map βg,t from the edges of g to the internal vertices
of t called the meet or greatest lower bound of leaves. Then

⟨g, t⟩ = {} ±1 βg,t ≅
0 otherwise

So for example, [pictures]
With the geometry you have, you can just work this out. You look for special

planetary alignments, and those satisfy this combinatorial rule. Then this civiliza-
tion and their astrology have the Jacobi identity at the center of their belief system.
If t1+t2+t3 is 0 by Jacobi, then ⟨g, t1+t2+t3⟩ = 0 and similarly if ⟨g1+g2+g3, t⟩ = 0.

This respects the quotient ⟨Trees⟩ → Poiss and ⟨Graphs⟩ → Poiss∨. This gives a
perfect (non-Kroneker) pairing. I emphasize this to say that some things are easier
to see on one side than the other. So Poiss contains the Lie operad Lie, whereas
Poiss has Eil, there’s a presentation, not a formal duality.
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Now let me tell you about the Hopf invariants more generally. The right context
is a standard duality due to Quillen that fits into Koszul–Moore duality. You have
differential graded commutative algebras and differential graded Lie coalgebras.
You have bar constructions BarCom and BarLie∨ , and I’ll use BarEilC

∗
dR(X). The

pieces will be

⊕
n

Eil(n)⊗Sn
(C∗(X))⊗n

and I claim that my example from before looks like [picture]

ν

ω

>>⑥⑥⑥⑥⑥⑥⑥

θ

This is a double complex and both of these have differential ω∧ν. Then I pull back
by f∗ everywhere. I can evaluate f∗θ on the fundamental class. I don’t know what
I do with the pullback of the other thing. If I take d−1f∗ω → f∗(ν). The other
term is [unintelligible], which is homologous to f∗θ, and now I can integrate this.

So in other words what I want to do is define integration in the bar complex

∫
BarEil[Sn]

γ ∶= ∫
Sn
τγ

where τγ ∼ γ is of weight one. Then the theorem is

Theorem 15.1. (S.–Walter) The map

HI ∶H∗(BarEilC
∗
dR(X)) → Hom(π∗(X),Q)

given by

γ ↦ (f ↦ ∫
BarEil[Sn]

f∗γ)
is a ≅

The cobracket structure is remove edges. By the Arnold identity, if you don’t
have a tree, you get zero. If you remove an edge you get two terms. That cobracket
is linear dual to the Whitehead bracket on rational homotopy groups. The evalua-
tion on a bracket is given by this pairing with homology cohomology evaluation.

Let me make another remark. We can perform this for H∗(BarcoAss(C∗(X,Z))).
Define HI1(X) as Hom(π∗(X),Z)/imHI. This is a homotopy invariant and it
should be difficult.

In standard linking theory we can choose the d−1 in the manifold setting, con-
centrated about submanifolds.

So I’ll take S4 → S2 ∨S2 ∨S2, and we’ll pull back three surfaces in S4 (or really
R4), disjoint and what we can do then is count the number of times that points on
each surface sit right underneath each other. It counts these kinds of coincidences.
That’s a very geometric picture of telling maps apart up to homotopy.

[some discussion of stable homotopy theory]
So Alberto and Pavel have essentially written these integrals down in a very

different context. I am not qualified to discuss the context, but I have some idea.
They want Chern–Simons invariants for general three-manifolds, the input is a Lie
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algebra, and they work in the BV formalism, get some solutions of the master
equation and eventually they write down integrals where the data is very similar
kinds of things. Cocycles come from a graph complex. The operations are either
d−1 or wedge, and they write down integrals that seem to coincide with these.

Let me write down some speculations. I want mapping invariants. Most applica-
tions of field theory to topology has been at the homeomorphism or diffeomorphism
level, so I want something a priori easier, using something like Chern–Simons the-
ory with g some L∞ model for the target but an arbitrary domain. What I wonder,
given that their things specialize to mine in some cases, maybe these can tell us
about the maps [X,Y ]. So field theory always starts with a space of sections.
One technical difficulty is that [X,Y ] is a set, not a vector space. When you have[Sn, YQ], by adjoint you have a loop space and then that gives a linear structure.
You could do naive things like take linear spans, but I think you’ll have to do
something different.

Then you do some perturbative things, then the conjecture is that you should get
something that for the sphere specializes to this, and for [X,Y ] gives you something
else.

So my dream, I hesitate to write things down, but if we get a good picture through
this technology, which is speculative, then you could take C∗E∞⊗Goodwillie Tower of Y ,
and one could maybe start seeing something that’s not strictly rational. A very
modest start for a sphere in Y . But a concrete question, I’d be very interested to
say, can one set up some field theory to give these integrals that I know are sharp.

Iterated integrals give complete invarants but

● The domain of the integral is a sphere cross an auxilliary space.
● The indeterminacy is “external;” philosophically you’re using the coasso-
ciative operad, not coLie. I think that was Haynes’ observation.

I wanted to hint that if this works very nicely, it’s a different question, you have
charts to compute homotopy groups of spheres. There’s lots of framed bordism
invariants that we spit out in industrial quantities. This is the start of a geometric
interpretation.

16. Ryan Grady: Perturbative QFT from derived stacks

I thought we should say감사합니다 to the organizers and the staff for a nice week.
Si said that the tradition of the last talk is to summarize the others. I’ll refuse to
do that but hopefully I’ll make contact with some of the other talks through the
week. I’ll talk some about a particular type of derived stack, L∞ spaces.

(1) I’ll present derived stacks.
(2) Then I’ll talk about geometric constructions, like vector bundles, charac-

teristic classes, sypmlectic structures, and so on, and this is a good place
to play for that.

(3) Then you can feed this stuff into BV theories. These are some good reasons
to consider this kind of thing.

The first thing I want to define, I’ll fix a differential graded commutative algebra
and a choice of nilpotent ideal, we’ve seen L∞-algebras show up, you could define
a curved L∞ algebra over such a pair.
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Definition 16.1. A curved L∞ algebra over (A, I) is a graded vector space V (a
locally free module over A) with a cohomologically degree 1 operator on Sym(V [1])
such that

(1) d2 = 0 and

(2) (mod I), the differential d vanishes on Sym0.

For us let (A, I) be (Ω∗X ,Ω≥1X ). I should say that L∞ often show up as extensions
of differential graded Lie algebras, controlling formal moduli problems. So you can
think that I’m pasting together formal moduli problems over a base X.

That’s sort of the first connection to point 1. So:

Definition 16.2. An L∞ space consists of a Z-graded vector bundle V on X and
an L∞ structure on g = Γ(V ) over (Ω∗X ,Ω≥1X ).

Let me give some examples.

0 An L∞ algebra that’s not curved is an L∞ space on a point.
1 So we could have gX as ΩX ⊗C∞

X
TX[−1]. Any time you have an L∞ space

you have a notion of cochains, and in this case, cochains on gX are a
resolution of smooth functions on the manifold. These is a resolution of X
as a smooth manifold over its own de Rham complex. You might think of
this as a way of encoding smooth manifolds into L∞ spaces.

2 Now let X be complex. then gX∂̄
= ΩX ⊗C∞

X
T

1,0
X [−1] and then this is a

resolution of OX .

3 Say L
pÐ→ TX is a Lie algebroid, then I get an L∞ space and gL = ΩX ⊗C∞

X(TX[−1]⊕L), adding in the extra bundle L. I’m not telling you the extra
differentials, but this is a resolution of C∗(L).

So all the others are specializations of this third example.
Let me give you a bit of flavor for how to construct these, a sort of amuse-bouche

so on a long plane flight you can cook up your own. How do I demonstrate that
something is an L∞ space? I need a differential on the L∞ cochains of this guy, let
me do it for example (1). So I need a differential on ΩX ⊗C∞

X
ŜymC∞

X
(T ∨X). How do

I define this? Choose some connection ∇ on the tangent bundle TX , then what does
this do? It gives me a splitting of a conical quotient map from the first filtration of
jets (by the order of vanishing) F 1J → Ω1

X . This connection gives me a splitting
(in fact the space of splittings is modeled on the choice of connection) which leads

to an isomorphism between Ŝym(T ∨X) and J the infinite jet bundle. Why does
this help me solve my problem? J has a canonical connection, the Grothiendieck
connection ∇Gr, so that flat sections are smooth functions. What can I do? Use
the de Rham construction, tensor with forms, and put the de Rham differential on
the connection, to equip the tensor product with a connection, and the result is
that ΩX ⊗C∞

X
Ŝym(T ∨X) has this d built out of the connection and the de Rham

differential.
If you know, you can try to do something similar using the holomorphic jet

bundle for the complex case or jets for the third.

Remark 16.1. I actually could have used a different commutative differential
graded algebra and nilpotent ideal in this picture. So you could have chosen C∞X and

0 or various quotients of this thing, (Ω0,∗
X ,Ω0,≥1

X ) if X is complex, or (C∗L,C≥1L).
All of these lead to different notions of L∞ space. Choose depending on what
structure you want on your formal moduli problems. So in the first case you have
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a smooth parameter space and you have points for all your formal moduli prob-
lems. Now here things fit into a flat family. In the Dolbeault resolution you get a
holomorphic family.

Let me give you more examples.

4 Suppose you have an embedding of complex manifolds (X,OX)↪ (Y,OY ).
Then there’s a construction of Shilin Yu that says that Ω0,n

X (N[−1]) (where
N is the normal bundle) is an example, where this controls infinitesimal
deformations of the normal bundle.

5 Take gXL
as C#L ⊗C∞ L[−1] given a Lie algebroid. This is an L∞ space

over the pair (C∗L,C≥1L), and I’m resolving this thing over the base of
the Lie algebroid itself.

Many of these examples are inspired by Kapranov. Anything that hasn’t been
done forty years ago has been done with Owen. There’s a ton of examples, many
probably already preexisting. Hopefully I’ve convinced you this isn’t a vacuous
thing. There’s a lot of wiggle room.

I want to address point one in my outline, how do these things lead to derived
stacks? We can evaluate a functor of points, they have points not only for their
own L∞ spaces (X,g) but on [unintelligible]. Let’s go back to the original definition
where the pair is the de Rham complex and the ideal generated by one-forms. Then
we can define a functor from a category of nilpotent dg maniflods to simplicial sets

B(X,g) ∶ dgManopNil → sSets

which to (M,OM , IM = ker(OM → C∞M)), this OM is a unital differential graded
algebra over de Rham complex of M . Just put whatever you want as your test
spaces for [unintelligible]and that’s what you put there, and check compatibility.

Let me give you the n simplices, I should check degeneracies but I’m not going
to do that, this is a pair (f,α) where f ∶ M → X is a smooth map and α is a
Maurer–Cartan element in f∗g⊗Ω∗

M
IM ⊗R Ω∗(∆n).

You can see the simplicial structure from the n-simplex. You don’t have to worry
about an infinite sum since I is nilpotent. The theorem, which goes at least back
to Costello, although I like to think we added some clarity, is that this defines a
derived stack

Theorem 16.1. (Costello, G.–Gwilliam) BX,g defines a derived stack.

This is what I meant by presenting a derived stack. I should say that over a point
lots of other people had already done this stuff, Getzler, Hinich, others. Smearing
it out is slightly new, I gess.

So I want to talk about geometric constructions on (X,g). So for vector bundles,
so that should be W sitting over X and an L∞ splitting of the identity g ↪ g =
⋉W → g where the brackets vanish if you have more than V . So the example, there
are a slew, but you might be interested in TBg

= g[1] and T ∨Bg
= g∨[−1]. This allows

you to define forms, so you can define forms, and they’re sections of the exterior
powers

Ωk(X,g) = C∗(g,∧kg∨[−k]).
For Lie algebroids, there are graded vector bundles for Lie algebroids. If you study
representations up to homotopy on the Lie algebroid, there is a faithful functor to
vector bundles over the corresponding L∞ space. I’ll define symplectic and shifted
symplectic structures and that will become even more apparent.
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So an n-shifted symplectic structure on (X,g) is a closed 2-form (I should put
in quotes here that closed two-forms, it’s truncated and shifted but being closed is
not a property, it’s data), and it’s nondegenerate, the underlying two-form gives me
a weak equivalence between T(X,g) and T ∨(X,g)[n], the tangent and shifted cotan-

gent bundles and one nice output, there were these examples of n-symplectic Lie
algebroids, those are rigid, not homotopical.

Proposition 16.1. If L
pÐ→ TX is an n-shifted symplectic Lie algebroid (e.g., the

Lie algebroid associated to a Poisson manifold, where L is a Courant algebroid)
then (X,gL) is an n-shifted symplectic L∞ space. There’s potentially more in the
L∞ space.

This gives one place to study n-shifted symplectic things in L∞ algebroids in
an invariant way. People in the Weinstein school, [unintelligible], [unintelligible],
discussed this in terms of [unintelligible]and that embeds into our setup.

Let me give you an example of a similar flavor to what Dan talked about earlier.
One reason you want to use this stuff is to try to understand mapping problems.

It’s a common problem that you want to understand spaces of maps between
smooth manifolds. You can choose various models of infinite dimensional manifolds
and you may or may not be able to do enough analysis there, and you can cook up,
often, a substack represented by an L∞ space. I want to describe one such example.

I want to study maps S1 →X, and the free loop space is wild but not that wild.
It’s presented people with a lot of trouble over the years. I want to look at it as a
functor of points, so, what do I want to call this guy? Imagine dgManopNil → sSets,

and toM I want to associate, maybe maps S1 ×M→X or rather families of these
parameterized by a simplex. But instead of studying X, I could replace it with gX ,
so study a functor instead

BS
1 dR

gX
∶ dgManopNil → sSets

defined by M↦ B(X,g)(S1
dR ×M)

I want to study the de Rham circle.

There’s a subguy B̂S1 dR
gX

, which is the same, it just forces, it’s the subspace where

the underlying smooth map S1 ×M→X factors through the projection toM. So
the functor of points, there are pairs, and I had a smooth map S1 ×M →X. This
is a formal neighborhood of the constant loops. It turns out that

Proposition 16.2. (1) (Costello) B̂S1 dR
gX

is presented by an L∞-space L(X,gX)
which is (X,Ω∗(S1)⊗ gX)

(2) (G.–Gwilliam) This L(X,g) is −1-symplectic when X is symplectic.

That’s the type of thing you might want to say, it’s the type of thing the BV
formalism is built to eat.

Let me make a little table
L∞ space Mapping problem Obsq (maybe obstructed)

LT ∗[[unintelligible]]X S1 → (X ↪ T ∗X) Diff h̵XL(X,ω) S1 →X (C∞X [[h̵]], [unintelligible])LEX Σ→X CDOh̵X
The first line is G.–Gwilliam and G.–Gwilliam–Williams. The second line is

G.–Li–Li. The third is Kevin, and the quantum observables is Gwilliam–Williams.


