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[Okay, so I’m very happy to introduce Richard Hind from Notre Dame. He’ll give
three lectures about symplectic embeddings, and also another in the department in
the geometry and topology seminar. Please sign on the sheet if you are interested
in coming. I’ll ask this question again in the intermission.]

I want to talk about the embedding problem in symplectic topology, focusing on
ellipsoids, where we can actually do some calculations.

What can you do in the symplectic category as opposed to the smooth or Rie-
mannian category. These questions break down into two parts. What can you do
symplectically, the first part is examples or constructions, and I’ll talk about those
today. You have some examples of things you can do, and the next step is to show
that you can’t do anything else, these are as good as it gets. I’ll talk about those
tomorrow.

It turns out that these are kind of independent things. Looking at it naively,
the constructions and obstructions seem unrelated. In the third lecture, when you
have embeddings you can ask how many there are or what the space of them is,
something like that.

I’ll run through, remind you of some definitions. I think you know all this.

Definition 1.1. A symplectic manifold (M2n, ω) is an even dimensional manifold
with a closed non-degenerate 2-form ω

The basic example, almost the only one I’ll talk about, is R2n, ω0 = ∑dxi ∧ dyi.
I’ll often separate the variables like that. It’s sometimes convenient to think of this
as Cn with zj = xj + iyj .

A symplectic ellipsoid is E(a1, . . . , an) = ∑ π∣zj ∣2

aj
≤ 1. Usually we write these

with 0 < a1 ≤ ⋯ ≤ an. I think of the ai as areas, not lengths. So E(a, . . . , a) is a
ball of radius

√
a
π
.

This notation will be best. Sometimes we consider Z(a) ∶= E(a,∞,∞,⋯,∞)
which is a disk of area a times Cn−1.

We can write λE(a1, . . . , an) = E(λa1, . . . , λan) which is scaling by
√
λ, just to

confuse you from the start.

Definition 1.2. A smooth map between two symplectic manifolds (M,ω)
xrightarrowf(N,σ) is symplectic if f∗σ = ω.

The basic exaple is H ∶M ×[0,1]→ R, a time dependent function, you take (p, t)
to Ht(p). You can make a vector field Xt defined by ω(Xt, ) = dHt. There’s a
duality between 1-forms and vector fields.
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2 GABRIEL C. DRUMMOND-COLE

Then time 1 flow is a symplectic diffeomorphism of (M,ω). An even more
concrete example, if you take Cn × [0,1]→ R, when you solve for Xt, it’s i∇Ht, the
gradient with respect to the Euclidean metric. At least in Cn you can visualize this
thing. In Morse theory you’d study the gradient flow. In this case it’s perpendicular
to the gradient flow.

The embedding problem is, given (M,ω) and (N,σ), does there exist a symplec-
tic embedding f ∶M → N .

For me, M and N will have the same dimension, either open or with boundary.
This is a different kind of thing. If they’re closed, an embedding is a symplectic
diffeomorphism and this is a classification problem.

In particular, open subsets of Cn.
So there are some results.

Theorem 1.1. Liouville’s theoremA necessary condition is that the volume of N
must be bigger than the volume of N . This is ∫N σn.

This was in the 1890s. In about 1985 we realized this was not a sufficient
condition, due to Gromov’s non-squeezing theorem.

Theorem 1.2. There exists an embedding from a ball of size a to a cylinder of size
b if and only if a ≤ b.

The nature of this is a continuous sort of problem. Say M and N are subsets of
Cn, say M is bounded. If λ ≫ 1, there will be an embedding (M,ω0) → (N,λω),
which is something like scaling N . If you scale it enough, there will certainly be an
embedding. So what’s the minimal amount you can scale?

An embedding f ∶M → (N,λω0) is optimal if there exists no embedding for M
into (N,µω0) for µ < λ.

I’m looking for optimal embeddings. Really I mean, a symplectic embedding
M → N I don’t really mean it, I mean there exists a symplectic embedding M →
(N,λσ) for all λ > 1.

[some discussion of this point]
I want continuous invariants of domains. The continuous invariants are wound

up with

Definition 1.3. Symplectic capacity is a function c ∶ C → [0,∞] (this C is some
set of symplectic manifolds) such that

(1) if M ↪ N then c(M) ≤ c(N),
(2) the capacity c((M,λω)) = λc(M,ω),
(3) we want c(B) > 0, and c(Z(a) <∞).

This is what excludes volume. You’ll never get the volume of a cylinder to be finite.

So someone didn’t just write this down.
Because of Gromov’s theorem, you can define cB(M) is the supremum of λ such

that B(λ) ↪M . Or you could define cZ(M) which is the infimum of λ such that
M ↪ Z(λ). These are obviously monotonic under embeddings. The main thing
is to check that the capacity of a cylinder is finite, which in this case is Gromov’s
non-squeezing theorem.

Here you can take all symplectic manifolds but sometimes you have to restrict.
I’m interested in these kinds of functions. I’m interested in embedding capacities,

and we’ll see they’re very difficult to compute. There exist other capacities, well,
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these are interesting, you can link these to dynamical systems, you get relations to
other subjects. Typically the other capacities will be harder to define but easier to
compute.

(1) Ekeland–Hofer capacities (92), c1, . . . of capacities, but for this, this will
only work for open subsets of Cn, these are related to choosing Hamiltoni-
ans.

Theorem 1.3. On an ellipsoid E(a1, . . . , an), we have ck is the kth number
in the sequence ℓaj where ℓ ∈ N and j = {1, . . . n}. It’s conceivable these
numbers are the same, so you use repetitions.

(2) Embedded compact homology capacities (ECH) due to Hutchings. The
sequence is e0, e1, e2, . . . and these only work in dimension 4, these are 4-
dimensional manifolds with boundary. We’ll come back to the definitions.
On an ellipsoid, E(a1, . . . , an), then ek is the kth number in the sequence
ℓaj +mak for ℓ,m nonnegative integers and j, k in the appropriate range.

So for some examples, let’s look at B4(2) = E(2,2), you get

2,2,4,4,6,6, . . .

What about E(1,4)? The volume of the ellipsoid is proportional to the product
of the numbers. So E(2,2) and B(1,4) have the same volume. There’s another
point, there’s no embedding E(2,2) into B(1,4) because that goes to B(1,∞) and
Gromov tells you that can’t happen.

It would have to be a funny thing going in the other way. It has to fill up the
volume but it can’t extend to the boundary.

The Ekeland-Hofer of this is

1,2,3,4,4,5,6,7,8,8

and you can see that ck(B4(2)) ≥ ck(E(1,4)) for all k. So there’s no obstruction.
What about the ECH obstructions? Now I can take all linear combinations, for

the ball,

0,2,2,4,4,4,6,6,6,6, . . .

If you worked it out for E(1,4) you get

0,1,2,3,4,4,5,5,6,6

and again it’s unobstructed but there are some equalities so it certainly can’t get
smaller, that’s reproving Liouville’s theorem.

Okay there’s one last thing, if you didn’t know about capacities, it’s tough to
define a capacity because I’m stuck with the condition on the cylinder having finite
capacity. You might think to yourself, it would be easier to let this be infinite, but
have a few less factors that are infinite, you have that one be finite.

Definition 1.4. (Hofer) a capacity of order k satisfies the first couple of conditions,
but I let the cylinder have ∞ volume, but when I remove factors it’s finite. I want
the capacity of B2k(1) ×Cn−k <∞ but B2(k−1)Cn−k+1 =∞.

Presumably this is easier to define. So the Gromov width is a capacity of order
1. But

n
√
vol is a capacity of order n.

So given this, you could have written these capacities of order n in the nineteenth
century, so you might think it was easier to get capacities of higher order.
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The thing is, if there was a capacity of order k, that implies there does not exist
embeddings B2(k−1)(1) ×Cn−k+1 ↪ B2k(R) ×Cn−k for any R.

This is all background stuff. Now I want to tell the story, what do we know
about ellipsoid embeddings?

I’ll list out some general theorems

Proposition 1.1. (1) Say q is a positive definite quadratic form and the set
E = {q ≤ 1}. Then there exists a linear symplectic map of Cn such that
ϕ(E) = E(a1, . . . , an) for some aj. So up to linear isomorphism all ellip-
soids are of this form.

(2) There exists a linear symplectomorphism such that ϕ(E(a1, . . . , an)) ⊂ E(b1, . . . bn)
if and only if aj ≤ bj for all j.

Theorem 1.4. GromovFor nonlinear ϕ we still need a1 ≤ b1.

At this point, I suppose, you might think you need equality in all factors, even
for non-linear maps. But that’s wrong.

This is due to this construction, symplectic folding. My kind of claim is that
this is supposed to explain a whole bunch of stuff. This says that the nonlinear
situation is more complicated.

Even before ellipsoids, take P (a, b) a polydisk B2(a) ×B2(b)

Proposition 1.2.

P (a, b)↪ P (2a, b
2
+ a)

Then you can do E(a, b) ⊂ B4( b
2
+ 3a). I want to prove this.

Proof. Think of P (a, b) as being fibered over B2(b). Symplectically, this is just
area-preserving geometry. A disk of area b in the z2 plane, I can replace it with
anything of the right area, so I’ll take two disks of area 1 with a thin strip on the
other end.

So the fibers are disks of size a which I think of as being a square. Then look at
G(x1, y1) = x1 This is a Hamiltonian on C. If you take i∇G, you get ∂

∂y
, the time

one flow displaces the fiber, moves it just up, that’s in a disk of size 2a.
Now we look at a Hamiltonian of z1, z2, which will be χ(x2)G(x1). What’s χ?

It’s a cutoff function that goes from 0 to 1. This is a function on R4 and you work
out the gradient, multiply by i. If x2 is negative, nothing happens. On the other
region, χ is identically 1 and the motion displaces the fibers.

In the middle you have a derivative bounded more or less by (1 + ϵ)a. If I take
the partial derivative with respect to x2, you get 1 times G(x1) which is bounded
by a.

So the flow, ψ1, the final step, let g be an immersion of the z2-plane which maps
DRHS → DLHS . The claim is that f , it’s the identity in the z1 components and
g(z2), I claim it’s an embedding. You just gotta check that there are no double
points. In these points the fibers are disjoint. You can choose g to be symplectic.

Then f(ψ1(P )), the fibers started in a disk of size a, they’re not leaving 2a. The
area of the other is a + b

2
. □

Theorem 1.5. (Schlenk) You can sort of fold a polydisk in half, there’s a little
bit left over at the end. Schlenck showed that for M2n symplectic, as long as the
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polydisk is thin enough, you can approximately get a volume-filling embedding into
M .

lim
ϵ→0

sup
vol(λE(ϵ, . . . , ϵ,1))

vol(M)
= 1

where the supremum is over all λ such that there is an embedding λE(ϵ, . . . , ϵ,1)→
M .

The intuition is you start with something very thin, you fold and fold and can
kind of fill up everything.

The difference between folding and what you can actually do is not big.

Theorem 1.6. (Buze-Hind) If M is closed and [ω] is rational in cohomology, then
there exists a k such that there exists an embedding λE(1, . . . ,1, ℓ) → M for any

ℓ > k where λn = vol(M)
vol(E(1...,1,ℓ)) .

These are close but here it’s saying that you can actually get there precisely, not
within ϵ, but we only know this when the class is rational.

The other intuition is once the domain is thin, these embeddings are more flexi-
ble.

Another modification. I’ll just sort of show you, imagine we understood the
polydisk case so well, we can just wave our hands and see what’s happening. We’ll
view everything from the moment projection. We can take (z1, z2) to π∣z2∣2, π∣z1∣2,
call this map C2 → R2, call it p. We get a triangle in the plane. If you did it with
a ball you get a triangle with two equal sides.

So I fold at b
2
. The fibers I displace, I only actually need a

2
, if you open things

out and apply the moment projection, this is what you’d see [picture].
Now I’d like to displace fibers, but I’ll only do it to level a

2
. Now you want to

fold this guy back, I want disjoint fibers to go to disjoint fibers, which will fit.
When I was folding for the polydisk, I put a block on top of another block. When

I’m starting with an ellipsoid, you’d leave a lot of space for free there.
Anyhow, where does this hit the axes, it goes to ( b

2
, a) in the corner and ( b

2
+a

2
, a
2
).

I’m missing ϵs as well but let’s leave that.
The other thing I’ve got, so b

2
+ a < b, so b is what I’d get by inclusion.

In other words, folding beats the inclusion exactly when 2a < b. Folding will be
more effective when the domain gets thinner.

What’s the answer? In general we don’t know, but two cases have been worked
out.

The known sharp result is for 4-dimensional ellipsoids into balls. This is due to
McDuff-Schlenck. They compute c(x) = inf{R∣E(1, x)↪ B4(R)} for x in [1,∞).

So for free, Liouville says that c(x) ≥
√
(x). On the other hand, I know that

c(x) ≠ x. On the other hand x
2
+ 1 may be less than x.

To describe the answer, they define a sequence g0 = 1 and gn is the odd Fibonacci

numbers, 1,1,2,5,13,34, . . ., and an = ( gn+1gn
)
2
and bn = gn+2

gn
.

Proposition 1.3. a0 < b0 < a1 < b1 < ⋯ and limn→∞ an = limn→∞ bn = τ4 where τ

is the golden ration 1+
√
5

2
.

We can check a few of these, we get 1 < 2 < 4 < 5 < 6.25 < 6.5 < ⋯ <∼ 6.85

Theorem 1.7. If x < τ4, then c(x) is linear between aj and bj, and c(aj =
√
aj,

volume preserving maps E(1, aj) → B4(√aj). Then c(bj) = c(aj+1). If x > 8 + 1
36
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then c(x) =
√
x. Once your ellipsoid gets thin enough you can always fill a ball of

the volume.
There’s a gap. This explains up to 6.85 and then you got something from 8

roughly, so in between τ4,8 1
36

you get eight exotic steps.

[picture] If you draw the square root, [pictures]
You can check that between 1 and 2, the inclusion is optimal, the line is y = x,

you know that E(1,2) ⊂ B4(2,2), the inclusion map is optimal exactly until folding
is useful.

So that’s the solution to the four-dimensional equation.
It raises various questions. Is there some way to intuitively understand this and

also, these embeddings are very obscure, they need to build these from Seiberg-
Witten invariants. We’d like something explicit and some explanation for this.

This is an independent theorem, also due to McDuff.

Theorem 1.8. An ellipsoid E(a1, a2)↪ E(b1, b2) if and only if ek(E(a) ≤ ek(E(b))
for all k. So ECH is a complete invariant for ellipsoid embeddings.

We have formulas for these invariants. But I don’t think anyone can prove
McDuff-Schlenck using this as the ingredient because the combinatorics are night-
marish. It’s very hard to use, this is infinitely many inequalities. Nevertheless, we
got one case

Proposition 1.4. (Buze–Hind)(combinatorics) E(1, a) into
√

a
b
E(1, b), volume

preserving, multiply to match volumes, this is only possible if a ≥ (5b+16)
2

16b
.

This is slightly better than folding, which says you can roughly fill by elemen-
tary constructions. The key ingredient is this bound which comes from the ECH
capacities.

This is the answer for 4-dimensional ellipsoids.
What I want to do next, rather than explaining how they prove this, the question

is, can you think about these results, maybe next time, I want to look at the function
inf{R∣E(1, x) × Cn−2 ↪ B4(R) × Cn−2}. This is the simplest higher dimensional
analogue. The first question is what you can do with folding? Well f(x) ≤ c(x),
it’s a smaller function, but you might imagine it’s exactly the same, what I get
here next time, it’s less than what you can do by folding, and it turns out that the
folding is never optimal, these are constructed by Seiberg-Witten. For the f -graph,
the folding graph clips the tops of these and then crosses and is underneath past
τ4. The red line follows McDuff-Schlenck until τ4 and then is equal to what you
get from folding at least for 3d − 1. Compared to McDuff-Schlenck, you get sharp
results in higher dimension even though it’s weaker in dimension 4.

2. March 6

Maybe I’ll just recap. Last time, there’s this McDuff-Schlenk capacity function
c(x) = inf{R∣E(1, x)↪ B4(R)}. You can always reverse factors and rescale and so
this covers all cases.

You have infinitely many steps before the fourth power of the golden ratio and
then a few sporadic steps and then you become the square root.

So with elementary methods, folding you can never do as well as the optimal
embedding after 2. So these are non-explicit embeddings.
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In very special cases, take CP2, let lines have area 2. Take a degree two curve in
here. The area is four. In other words, there’s an embedding of a disk, more or less,
of size four into C. This has the Fubini-Study form. So if you restrict this to the
complement of C it’s exact, this is dλ. So λ is dual to some X and let’s compute
LXω. By Cartan’s formula this is d(X ⌟ ω) = dω = ω. Then

E(1,4) ≅ {x ∈ (CP2/C)∣ lim
t→∞

ϕtX(x) ∈D(4)} ∪D(4).

You could start writing the primitives down pretty precisely. The X is a gradient
flow a pleuriharmonic exhaustion. The log of a section of a line bundle whose zero
is exactly this divisor.

Then we had this function fn(x) = inf{R∣E(1, x) ×Cn−2 ↪ B4(R) ×Cn−2}.
So we clearly have f(x) ≤ c(x) but it’s not necessarily an equality. The moti-

vation is that this is a first step to higher dimensional results. The problem with
higher dimensions is, there’s no Seiberg-Witten theory and no embedded contact
homology.

Maybe also you get some insight back into the McDuff-Schlenk function.
So Ekeland-Hofer says, you could look at E(1, x,∞, . . . ,∞), you take multiples

of factors and write them in order, you get

1,2,3, . . . , x, x, x + 1, . . . ,

On the other hand, on the other side, for B4(R) × Cn−2 = E(R,R,∞,∞, . . .), so
here you get

R,R,2R,2R,3R,3R, . . .

If there’s an embedding, these have to dominate, you see that R ≥ 2 multiple times
and then you don’t get any other information after you hit x. So if x > 2, you only
find out that f(x) ≥ 2. These are very weak obstructions.

Theorem 2.1. (1) There exists an explicit embedding (folding style) for any
T , E(1, x, T, . . . T )↪ B4( 3x

x+1) ×C
n−2.

(2) If x = 3d − 1 and T ≥ x then this is optimal (joint with Kerman).
(3) If x ≤ τ4 and T ≫ 1 then E(1, x, T, . . . , T ) ↪ B4((c(x)) × Cn−2 is optimal

(joint with Cristofaro–Gardiner)

We’ll have to use a bit of machinery for the second and third but the first we
can write down.

Corollary 2.1. By Pelayo–Ngöc, you can take a limit as T →∞ to get an embed-
ding of E(1, x,∞, . . . ,∞)→ B4( 3x

x+1). So f(x) ≤ 3x
x+1 . If you let x run to ∞ you get

E(1,∞,∞, . . .) ↪ E(3,3,∞, . . .). These kinds of embedding were found by Gouth,
called catalyst maps.

In physics, there’s a Hamiltonian flow from one to the other. You could embed
all of Euclidean space into a cylinder. With a mechanical system, you add in an
extra parameter, a particle that’s a catalyst, you can cheat non-squeezing.

In particular, what we’re getting is B2(1) × Cn−1 → B4(3) × Cn−2. This means
there are no intermediate capacities.

A corollary of the second part of the theorem says that f(x) = 3x
x−1 for x = 3d−1.

A corollary of the third part is that f(x) = c(x) for x ≤ τ4.
So it’s enough to show E(1, x, T )↪ B4( 3x

x+1)×C
n−2, you can actually do better,

look at π∣z1∣2 ≤ 2x
x+1 , π∣z2∣

2 ≤ 2x
x+1 .
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You can’t, in McDuff Salomon, you can’t flow from a ball of area 1 to another
ball of area 1 passing through a slit of size less than 1.

So there are balls, you can ask about E(1, S, S) passing through a slit in Cn of

the shap B4(R) ×B2(n−2)(T ) for arbitrary T , you could ask if they’re isotopic for
R < 3. You’d like to push them into a torpedo and push them through, and that’s
not going to work.

I’m going to focus on getting into P ( 2x
x+1 ,

2x
x+1), maybe you believe that then

getting it into the ball is not such a big deal.
Think of E(1, x, T ) as fibered over a disk of area x, set λ = x

x+1 , so what’s

the ellipsoid? It’s π∣z1∣2 + π∣z2∣2/x + π∣z3∣2/T ≤ 1. So if π∣z2∣2 ≥ λ, this means
π∣z1∣2 ≤ 1 − λ

x
= λ.

So I’ll write my disk as being a disk of area λ and then a very long strip. The
points going on the sliver, I can say the fibers are in P (1, T ) over the disk and
P (λ,T ) on the sliver.

I’ll have to do a multiple symplectic fold. Call P (λ,T ), call it P0, we’ll wind
things up. We’ll really try to use the C-factor.

Let me draw a picture. In the image I just need to control the factors. [pictures,
missed some.]

So how to get obstructions?

Definition 2.1. Σ2n−1 ⊂ (M,ω) is of contact type if there is a Liouville vector
field X (i.e. LXω = ω) near Σ transverse to Σ.

Define λ =X ⌟ω. Set λ0 = λ∣Σ. Then λ0 is never zero. It’s ω(X, ), since the ω
is nondegenerate this can’t be vanishing. It’s transverse to the hypersurface so it
should evaluate on something tangent to the hypersurface.

We can also use the formula d(X ⌟ ω) = dλ. If you differentiate λ0, you get
dλ0 = ω∣Σ. So λ0∧(dλ0)n−1 is λ0∧ωn−1, and again by nondeneracy this is a volume
form.

We call λ0 a contact form. The kernel of λ0 is what you call a contact structure.
This is the odd dimensional analogue. A contact form has a Reeb vector field

corresponding to the form given by R ⌟ dλ0 = 0, this defines this up to a multiple
since ω is nondegenerate. So then we normalize it so that λ0(R) = 1.

So E(a1, . . . , an), the boundary of this is of contact type by, I have the radial
vector field transverse to this. The Reeb vector field is parallel to in⃗ which is
something like, a level set of a function, a gradient —

i(x1
a1
,
y1
a1
, . . . ,

xn
an
,
yn
an
) = (−y1

a1
,
x1
a1
, . . . ,

−yn
an

,
xn
an
) .

In complex coordinates, the flow of R, we have żj = izj
aj

. So zj(t) = zj(0)e
it
aj .

Let me stick a 2π in so that I get a 2π in the exponent. That’s the Reeb flow.
So zj(t) = zj(0) either if t is an integer multiple of aj or zj(0) = 0.

Now let me assume
aj

ak
is irrational. If t is a multiple of aj then it’s not a multiple

of ak. This will let us write down closed orbits. There are then exactly n closed
orbits. So γk = {zj = 0, j ≠ k}.
Definition 2.2. A symplectic cobordism M is a symplectic manifold with contact
type boundary, let’s say compact.

For example, the main example, if ϕ ∶ E(a1, . . . , an) into the interior of E(b1, . . . , bn),
then, call them E2/ϕ(E̊1) is a sypmlectic cobordism.
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Theorem 2.2 (Weinstein theorem). If Σ is of contact type with contact form λ0,
then a neighborhood of Σ is symplectomorphic to (Σ × (−ϵ, ϵ), d(etλ0)).

Then the boundaries of the symplectic cobordism are positive if theX is outward-
pointing and negative otherwise.

So symplectic cobordisms have canonically defined inward and outward ends.
We want to study these, and the idea is that a symplectic embedding gives you

a symplectic cobordism, so let’s work out properties of these.
It’s customary near a positive end to choose a diffeomorphism, a neighborhood

of the end, our expanding vector field is x = ∂
∂t
. So a positive end will look like

Σ × (−ϵ,0), and it’s helpful to just choose a diffeomorphism (x, t) → (x, f(t)), so
you identify with Σ × [0,∞), and now it’s like ϕ(t) is increasing and you want
limt→∞ ϕ(t) = 1.

Somehow the analysis is clearer in this picture.
All right, so why do we want to think of the interval as being long?

Definition 2.3. An almost-complex structure on ○M is compatible if

● g(X,Y ) = ω(X,JY ) is a Riemannian metric,
● on Σ × (0,∞), we have J(ξ) = ξ where ξ is the kernel of λ0,
● J( ∂

∂t
= R the Reeb field, and

● J is translation invariant.

[Pictures]
Note that the map from the punctured disk to Σ× (0,∞)(write it as S1 × (0,∞)

but use the complex structure from the complex plane) so i ∂
∂t
= ∂

∂s
.

Before we make this, suppose γ is a closed Reeb orbit in Σ parameterized by
x ∶ [0, T ]→ Σ. In other words x(0) = x(T ) and ẋ(t) = R.

So the map takes (s, t) to (x(Ts), T t + c). I claim this is a holomorphic map.
You have to check, in other words, it satisfies the Cauchy-Riemann equations,

so du ○ i = J ○ du, to check this, you should check ∂u
∂s
= J(∂u

∂t
).

So anyway, if I have a closed Reeb orbit in Σ I can look at it as a holomorphic
punctured disk.

You do this in closed manifolds, define these structures, now I can get holomor-
phic curves that are cylinders over Reeb orbits. Let’s get something more global.

Definition 2.4. A (genus 0) finite energy curve is a map u ∶ CP1/Γ→ M̊ such that
du ○ i = J ○ du and u is asymptotic to a closed Reeb orbit near each puncture.

So Γ is a finite set of points in CP1, so what does it mean to be asymptotic to a
closed orbit? You can write Γ as Γ+ ⊔ Γ−, so Γ± will be asymptotic to positive or
negative ends.

If z a positive end and γ is a closed orbit in a positive boundary component.
For u to be asymptotic to γ at z means I can choose coordinates S1 × (0,∞)

as before on a neighborhood U of the puncture such that u(U) is contained in
Σ × (0,∞) and u(s, t) is (x(Ts), T t + c) for some parameterization x of γ plus an
error term e(s, t) which is exponentially small in t, so et∣e(s, t)∣ is bounded.

So a holomorphic curve might look like [picture]. In the symplectic picture they
look like surfaces with boundary. You could compactify to get a symplectic surface
with boundary. Holomorphically they look like punctured disks. The claim is they
have properties like closed holomorphic curves so we can use them to prove things.
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3. March 9

Last time we finished off wth the idea of a finite energy curve, a holomorphic
map u ∶ CP1/Γ→ (M,J).

It’s a holomorphic map asymptotic to Reeb orbits at the punctures.
The idea is to prove things using these as the tool.
There’s a theory of these things. There’s a theory analogous to closed curves.

Let me mention some names: Hofer–Wysocki–Zehnder wrote four or five papers in
the mid-nineties, and for compactness it was joint with these guys and Bourgeouis-
Eliashberg.

I want to mention a few points about this.

(1) There’s a Fredholm theory that says, for generic J , you get a moduli space
Ms(γ+1 , . . . γ+r , γ−1 , . . . , γ−s ,A, J) with specified behavior at the punctures,
and this is a manifold of the expected dimension. We mean that u ∼ u ○ ϕ
where ϕ is a Möbius mapping. Hree γi are the orbits at the boundaries. A
is a relative homology class. S means that this is injective, meaning that if
you restrict away from more finite points, it shouldn’t be a branched cover.
So throw out the multiple covers or the statement is false.

Let me tell you briefly why you need this. The idea is to look at a
universal moduli space M̃S = {(u, J)∣∂̄Ju = 0}. This is a subset of B ×
J , a Banach space of maps cross a space of compatible almost-complex
structures.

There’s a vector bundle over this with fiber (0,1)-forms valued in the
pullback of the tangent bundle of M . There’s a section of this bundle (∂̄)
and I claim that it’s transverse to the 0-section, which implies the zero set
is a manifold and once you know that you look at the projection onto J
and this is a Fredholm map and you can use the Sard-Smale theorem for J
of the second category. If you take J and pull it back you getM(J), which
is a finite dimensional manifold (of the dimension you want).

Why is the claim true? I’m mentioning it, this is why you need the
somewhere injective condition. If you differentiate ∂̄, take the vertical com-
ponent, you want to show that’s onto, you look at Dv∂̄ and apply it to
(0, y), where 0 ∈ TuB and y ∈ TJJ . You want to choose J supported near
u(z) where z is an injective point. [discussion]

(2) Compactness. First of all, this is supposed to be a generalization of Gro-
mov’s compactness theorem.

So C∞ on compact subsets is not enough. Maybe we’re looking at
M(γ+, γ−). We’re looking at positive and negative ended cobordisms. Near
the end, it looks like ∂M+ × [0,∞). Maybe there’s a family of curves in
the moduli space that look asymptotic to σ and then they skew over. You
could imagine taking a limit that converges uniformly on compact subsets
and in the limit you get something converging to the wrong thing.

Say (M,ω) is closed with Σ of compact type and its removal divides
M into two parts. For U a neighborhood of Σ it can be made to look
like (Σ × (−2ϵ,2ϵ), detλ0). Choose J0 such that on U it preserves ξ2n−2 =
kerλ0 ⊂ TΣ × {t} and J0(R) = − ∂

∂t
, also transaltion invariant.

So we can then define JN equal to J0 off U and on ξ. But JN(R) =
f(t) ∂

∂t
. [pictures and discussion]
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Theorem 3.1. (Bourgeois, Eliashberg, Hofer, Wysocki, Zehnder) Let UN

be a sequence of JN -holomorphic maps CP1 → (M,JN). Let [uN(CP1)] =
A, a fixed class. Then a subsequence of uN converges á la Gromov to a
so-called holomorphic building.

Definition 3.1. The domain of a holomorphic building is a nodal Riemann
surface with punctures. F gives a holomorphic map on each component
which is a finite energy curve with image in M+, M−, or Σ×R. This F has
a level k, the components are labeled 0 through k+1. The level 0 components
map into M−. Level k + 1 go to M+, and the other levels go to Σ ×R.

If nodes connect components in the same level, they are removable sin-
gularities and the two components intersect at the node. Otherwise, if the
labels don’t coincide at the node, then they differ by exactly one, say they’re
r and r + 1. Then level r has a positive puncture asymptotic to γ and level
r + 1 has a negative puncture.

[picture, discussion]

4. Ellipsoid embedding obstructions from finite energy curves

Say you want to study E1 → E2. For any λ > 0 such that there exists an
embedding λE1 → E2, you get a symplectic cobordism E2/ψ(λE1). There you can
study finite energy curves.

Given a moduli space, M(γ+1 , . . . γ+r , γ−1 , . . . , γ−s , ψ, J). Say the moduli space is
of dimension 0. Then I expect the cobordism class of [M] (which is a number of
points with orientation) to be independent of all choices (ψ,λ, J).

This is a special thing about ellipsoids. Why? The input data is a connected
set. The set of ψ,λ contracts onto a smaller choice where it’s just linear. You can
interpolate between ψ0, λ0 and ψ1, λ1 via ψt, λt.

Generically M = {(u, t)∣u ∈M(ψt, Jt)} is generically dimension 1. I need M to
be compact so that points need to cancel out.

The point about this whole claim. It’ll be impossible to distinguish ellipsoids
directly. The moduli space will not help for isotopy questions. Why isM compact?
Suppose not. Then when we run this compactness theorem and get a building, the
building will be non-trivial. The curves will have to converge to something other
than a cylinder. The only thing you could do is lose information at the top or the
bottom. [discussion]

. . . so the key is that any moduli space associated to ellipsoids has even index.
So I get some spaces of index −2 which is a contradiction because I have only a
one-parameter family to increase the dimension from the index.

I want to push that scheme through in a few cases in order to prove that theorem.

Theorem 4.1. (with E. Kerman) Suppose E(1, x, S)
↪
ψ X = B4(R) ×C. I’ll com-

pactify the four-ball to CP4(R) × C. Write CP2(R) = B4 ∪ CP1(∞). We want
x = 3d−1+ ϵ and S > 3d−1. We’ll think of X as a cobordism form ∂E to the empty
set.

Then M(X/ψ(E), γ3d−1, d, J) is not equivalent to the empty set as a cobordism
class. Hree γ is a 3d − 1-cover of a short orbit on ∂E. We have d the class given
by taking u of CP1(∞) ×C.
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Corollary 4.1. Let U be a finite energy plane in M. Then ∫ u∗ω, if I fill in a
3d − 1-cover, I should get d ×R, and then subtract the cover of the disk, so you get
dR − (3d − 1). This has to be positive, so R ≥ 3d−1

d
, which is roughly 3x

x+1 .

So f(x) ≥ 3x
x+1 .

So we just need to show that [M] is nonempty, let’s do it for the inclusion map
ϵ(E(1, x, S))→ CP2(R) ×C.

First we need some curves in CP2. Then I’ll get curves in the complement of
E(1, x), and then we’ll move to the product.

So first of all I need curves in CP2. I’ll blow it up at one point and work in

Y = CP2#CP2 I’ll let E be the exceptional divisor. I’ll look at N(Y, d[CP1(∞)] −
(d − 1)[E], p1, . . . , p2d). I claim this has a single element (and that you know this)
if J is integrable. Then Y → E is holomorphic with CP1 fibers. This takes all of
CP2, lines through the origin project to the exceptional divisor.

Its degree is either ±1, I’ll say −1, and the homology class is a class of sections
with d poles, intersections with the CP1 at ∞, and (d − 1) zeroes.

A section of a line bundle over a CP1 like this is determined by the position of
the poles, the position of the zeroes, and one parameter for the phase. So that’s
2d point constraints. Then general Gromov-Witten stuff says you have just one for
any J .

Now what about CP2 minus the ellipsoid. I’ll blow up a very small ball inside
the ellipsoid. Let me fix the point constraints also inside the ellipsoid. I want to
stretch the neck along the boundary of E. I get a curve in N for all JN , this is an
almost complex structure stretched along the boundary of E.

Then we stretch this to a holomorphic building. It’ll have top-level components
in CP2/E. What are they? This is where you just have to analyze this.

Proposition 4.1. There is a single top level component (of degree d) asymptotic
to γ3d−11

This is not, okay, somehow this is very lucky that this works, in a way. We’ll see
why but it’s very fortunate.

First you calculate that the (k+1) level is connected and that plus index 0 means
that it winds 3d − 1 times.

It’s very fortunate that there’s only one end. It’s conceivable, you could get
something with two negative ends and that would be very bad but somehow it
doesn’t happen.

So we’ve produced curves in CP2 −E(1, x). Then we could choose a J on CP2 ×
C−E(1, x, S) such that the slice z3 = 0 is holomorphic. Then we can lift our curves
here. Now all I have to do is count them.

The thing about one end, we’re producing curves in dimension 4 and saying they
exist in dimension 6. But that mainly works with one end, because more than one
end tends to lower your index.

So we have curves in here. The problem is to count them. In dimension four
you have automatic regularity (due to Gromov, Wendl). That means the curves in
{z3 = 0} count with sign, positively.

Further choose J to be invariant under rotation in the z3 coordinate. If there
were any other curves, they’d come in one-parameter families by rotating in z3. It’s
index 0 so it should come in zero-dimensional families. That’s sort of a contradiction
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to curves outside z3 = 0 but it requires one thing, which is J being regular, which
is kind of the hardest thing.

How do you choose J to be S1-invariant and regular? You want to show that
the universal moduli space is a manifold, and you can do that with somewhere
injective curves, way back in the beginning. Here you have these orbits, so you want
to replace this with “orbitally simple” meaning they intersect typical S1-orbits at
most once.

Proposition 4.2. There exists a regular J such that the curves are orbitally simple.

This is a delicate proof. It’s not obvious that this should be true. If the curve
is not orbitally simple, you’d project to a multiple cover on the zero section. You
study the projection, so how would you do that, you’d somehow say, so in dimension
four, for index zero, you’ve got kind of your, if you look at your degree and how
much you have to wind around the orbit, the graph is y = 3d − 1. We’re sort of
sitting on this graph. If these curves are projected to a multiple cover, the degree
will be k less, d/k. If you intersect k times you have degree d/k. The same thing
will happen with the y-value. So you’ll end up on a line to the origin. That’s the
underlying curve. Then you need to have more negative ends than your degree
allows.

If you believe all that, the only curves are in z3 = 0 and that’s the end of the
proof.

There’s a few details that I’m skipping. Anyway, let me give some similar results.
This whole game works if you can find moduli spaces, index 0, with a single neg-

ative end. The point about the single negative end, it means the four dimensional
index is the same as the higher dimensional index.

So an example of such a thing is, remember, if we look at E(1, bn, S)↪ B4 ×C ⊂
E(R,R + ϵ) ×C. (remember that bn is, if gn are the odd Fibonacci numbers, well,
it’s gn+2/gn).

The moduli space (no homology class because it’s two ellipsoids)M(γ+2 , . . . , γ+2
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

gn+1

, γ−gn+21 )

has index zero.
This is in X/E(1, bn, S).

Theorem 4.2. (with Cristoforo and Gardiner) [M] is not cobordant to the empty
set

The corollary, you can compute the area by Stokes.

Corollary 4.2. The area is gn+1R ≥ gn+2. This gives R ≥ gn+2
gn+1
= c(bn).

This is the McDuff-Schlenk numbers, it’s nice that it works out.
This is supposed to say that folding explains optimal embeddings, but based on

the argument you know nothing about isotopies. I claim this also tells us folding
gives us isotopies as well.

Remember there’s an embedding P (a, b)↪ B4( b
2
+2a). This starts with P (a, b),

you fold at b
2
, so you make room for the fold. Initially this is in a ball of size a + b.

I pick up the inside and sort of fold the thing back.
If 2a < b, then this is less than b + a, so this does a squeezing on the polydisk,

but the thing expands before it shrinks. If you draw a ball, it goes to a ball of size
b + 2a. Halfway through folding you’ve kind of gone out.
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Theorem 4.3. Let’s suppose a + b < R < 2a + b.
The initial polydisk P (a, b) and the folding are not isotopic in B4(R).

The moduli spaces are a little different but the argument is the same. Folding
is sharp here as well.

I’ll leave it there.


