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GABRIEL C. DRUMMOND-COLE

1. January 16, 2018: Byunghee An, bar and cobar

Today I am going to talk about bar and cobar constructions again, between
categories of algebras and coalgebras.

I think that one of the goals is to explain this diagram. You have a category Alg
of algebras and a category Alg∞ of ∞ algebras, and a category Cog of coalgebras,
and a full subcategory of fibrant and cofibrant objects. Among these four categories
we can think of algebras as a non-full subcategory of A∞ algebras. We can think of
coalgebras which are fibrant and cofibrant as a full subcategory of coalgebras. We
want to define functors between these:

Alg Alg∞

Cog Cogcf

B B∞Ω

and B∞ will be an equivalence and all of these will induce equivalences on the
homotopy categories.

I will define everything but this is my goal.
Let’s start with algebras Alg. This is the category of unital augmented dg alge-

bras over k a field, objects are (A, ε) where A is a unital algebra and ε is an algebra
map A → k, and this has a model category structure where the weak equivalences
are the quasi-isomorphisms, the fibrations are the degreewise surjections, and the
cofibrations are the maps with the left-lifting property against trivial fibrations.

It is known

Theorem 1.1. This data defines a model structure on Alg.

Now I want to define the category of coalgebras, so let me denote Cog′ the
category of coaugmented dg coalgebras, an object consists of a complex C with
differential d, a coproduct ∆, a counit η and a coaugmentation ε. We require that
d is a coderivation against ∆, so that (d⊗ 1 + 1⊗ d)∆ = ∆d, that ηε = 1k.

For example, let (V, d) be a complex. Then T c(V ), the “tensor coalgebra” on V ,
is ⊕n≥0 V

⊗n, and the coproduct is defined by the sum of all possible separations.

∆(v1 ⊗⋯⊗ vn) =∑(v1 ⊗⋯⊗ vi) ⊠ (vi+1 ⊗⋯⊗ vn).
So for example ∆(v) = 1 ⊠ v + v ⊠ 1.

There is a canonical projection T c(V )→ V taking the V summand. But T c(V )
is not cofree on V . This does not have a universal property, that coalgebra maps
to T c(V ) are the same as maps to V . Suppose we have C a coalgebra and take a
chain map C → V . Then there need not be a lift to T c(V ). The answer is no.

So I want a smaller (full) subcategory Cog whose objects are cocomplete, meaning

that C = ⊔ker (C → C⊗n → (C/k)⊗n) where C → C⊗n is the iteration ∆(n) of ∆. If
1
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you take the coproduct enough times it has the base field element in at least one
factor. It cannot be decomposed in a trivial way any more.

We can easily see that the tensor coalgebra is cocomplete, any element is in the
form, a finite sum of v1 ⊗⋯vn, and if you take the coproduct to n + 1 copies, there
will be some 1 somewhere. Actually it is not only cocomplete, it is cofree in the
category of cocomplete coalgebras. For any C in cocomplete coalgebras and any
chain map from C̄ to V we can always find a map from C to T c(V ). These should
be counital maps and send k to 0. So T c(V ) is cofree on V in Cog.

So let’s let C be a cocomplete coalgebra and A a unital augmented algebra.
Then we want to consider Homk(C,A), well, really, we want chain maps that are
compatible with augmentations. We want a differential and algebra structure, and
I’ll put this in Alg, and the differential will be D and the multiplication ∗. The
differential is D(f) = dAf − (−1)∣f ∣fdc. The product is µA(f ⊗ g)∆c, the unit is
ηA ○ ηC .

The nontrivial thing to check is that d is a derivation with respect to the product.

D(f ∗ g) =Df ∗ g + (−1)∣f ∣f ∗Dg.

The left hand side is

dAµA(f ⊗ g)∆C − (−1)∣f ∣+∣g∣µA(f ⊗ g)∆CdC ,

and the ∆C and dC have compatibility and can be interchanged, and likewise dA
and µA, so we get

µA(dA ⊗ 1 + 1⊗ dA)(f ⊗ g)∆C − (−1)∣f ∣+∣g∣µA(f ⊗ g)(dC ⊗ 1 + 1⊗ dC)∆C

= µA(dAf ⊗ g + (−1)∣f ∣f ⊗ dAg) − (−1)∣f ∣+∣g∣µA((−1)∣g∣fdC ⊗ g + f ⊗ gdC)

= µA(Df ⊗ g + (−1)∣f ∣f ⊗Dg)∆C

but this is the multiplication in A and the coproduct in C so this is

Df ∗ g + (−1)∣f ∣f ∗Dg,

which is the right-hand side.
We call τ ∈ Hom1

k(C,A) a twisting cochain if Dτ + τ ∗ τ = 0 and ετε = 0. We
define a set Tw(C,A) as the set of all twisting cochains.

For a given A you get a contravariant functor C ↦ Tw(C,A). We need to check
functoriality, that if you have a map C ′ → C that you get a map Tw(C,A) →
Tw(C ′,A), by postcomposing.

We need to check that this is a twisting morphism. If τ ∈ Tw(C,A) and f ∶ C ′ →
C, we need to check that D(τ ○ f) + (τ ○ f) ∗ (τ ○ f) = 0.

But this is

dA(τf) − (−1)(τf)dC′ + µA(τf ⊗ τf)∆C′

= (dAτ − (−1)τdC)f) + µA(tau⊗ τ)(f ⊗ f)∆C′

=D(τ)f + µA(tau⊗ τ)∆Cf

= (D(τ) + τ ∗ τ)f = 0.

This functor is nice. It’s representable, and I want to give an explicit representation,
which is the bar construction. We define BA as the tensor coalgebra T c(SĀ), where
SA is the shift of the algebra A. Then the differential is ∑1⊗−dA⊗1⊗− plus another
term using the (shifted) algebra b2 (which is s−1µs⊗ s) which is ∑1⊗− ⊗ b2 ⊗ 1⊗−.
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Then BA ∈ Cog, and the canonical projection is to SĀ, and by postcomposition
you have a morphism to Ā, which we denote τ0. I want to show that τ0 is a twisting
cochain. The projection map is degree 0 and the other map is degree 1, so I want
to check that D(τ0) + τ0 ∗ τ0 = 0.

But this is, well, τ0 = S−1π. Then it’s the same as saying that

dA(S−1π) − (−1)(S−1π)dBA + µA(S−1π ⊗ S−1π)∆BA = 0.

If we put v1⊗⋯⊗vn where n ≥ 3 then the projection right away gives 0. We need to
check or v1 ⊗ v2. If you take the latter, then you get, by taking the definition, you
get S−1b2(v1, v2), and the differential dBA is some dA terms and a b2(v1, v2) term.
One of these vanishes because of the projection; the other gives the A∞ relation.
The case with just v is easier.

So what I proved here is that τ0 is a twisting cochain, it’s contained in the set
Tw(BA,A). Now I want to prove that Tw(C,A) is bijective with HomCog(C,BA).
I wnat to show this representation statement. So a map τ ∶ C → A gives a map
C → BA by the universal property. To prove bijectivity, we need to check that
τ̃ ○ τ0 ∈ Tw(C,A).

But this is not hard. The equation for D(τ0 ○ τ̃) + (τ0 ○ τ̃) ∗ (τ0 + τ̃) can be
rewritten (as previously (Dτ0 +
tau0 ∗ τ0) ○ τ̃ = 0.

Dually, this construction, we started with a fixed A and get a contravariant
functorp Dually if we fix a coalgebra then we get a covariant functor by assigning
the same set. It’s corepresentable, and the elements represented by it are “cobar.”
Let’s have a break.

Damien asked why we consider twisting cochains. I said I don’t know why.
[Christophe: They are the first nontrivial examples of Maurer–Cartan elements.

These are very simple elements on which we can express the calculus on A∞ cate-
gories. Knowing these is enough to reconstruct your A∞ category. You can reduce
to calculating these. This corresponds in the Fukaya category, say, to a very precise
calculus.]

You can use a twisting cochain to deform the A∞ structure. So I want to define
a functor Ω ∶ Cog → Alg and will show that Ω and B are adjoint to each other.

Now I fix a coalgebra C, and whenever we have an algebra A we can define a set
of twisting cochains Tw(C,A), and this is functorial, A ↦ Tw(C,A), covariantly.
So we should prove that a morphism A → A′, by postcomposing you get a map
Tw(C,A) → Tw(C,A′). We should check that D(fτ) + (fτ) ∗ (fτ) = 0, and this
is the same as f(Dτ + τ ∗ τ) = 0, so that this functor is well-defined. Moreover
it is actually representable by an element “Cobar,” ΩC, which is nothing but the
tensor algebra T (S−1C̄), this is the tensor algebra. So we want to regard this as an
algebra, so we need a differential, and d = ∑1⊗− ⊗ dC ⊗ 1⊗− +∑1⊗− ⊗ S−1∆⊗ 1⊗−.
Here S−1∆ is something like (S−1 ⊗ S−1)∆S. We need to check that d is actually
a derivation of the tensor product. I don’t want to check the details.

There’s a canonical map, something like C → S−1C → ΩC, this is a degree 1
map, and we can denote this by, well, I want to show that this is in Tw(C,ΩC).
So we need to check that D(iS−1) + (iS−1) ∗ (iS−1) = 0 but this is

dΩC(iS−1) − (−1)iS−1dC + µΩC(iS−1 ⊗ iS−1)∆C

but this is just

dΩCis
−1 − (−1)idS−1CS−1 + µΩCS

−1∆.
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but this is the definition of dΩC , and so this is very complicated but conceptually
this is nothing but the definition of the differential on ΩC. So this ι̃ is a twisting
cochain, and the functor from algebras to sets A ↦ Tw(C,A) is represented by
ΩA, it’s HomAlg(ΩC,A). To see this we have the kind of situation C → A, and
the canonical inclusion C → Ω(C), but this tensor algebra is a free object in the
category of algebras, so we can always find a morphism from Ω(C) to A so we only
need to prove the other way, that the composition of τ̃ ○ ĩ is a twisting morphism.
But this is the same as like τ̃(Dι̃+ ι̃∗ ι̃), and we showed that ι̃ is a twisting cochain,
so this is zero.

So what we’ve shown is that there are two bijections

HomCog(C,BA) ≅ Tw(C,A) ≅ HomAlg(ΩC,A),

there are such bijections, and we have these two functors, and these are adjoint to
each other. So Ω is left adjoint. This is bar and cobar.

I wnat to mention a model structure on the category of coalgebras. A map is a
weak equivalence in Cog if and only if Ω(f) is a weak equivalence in algebras. The
cofibrations in Cog are the degreewise injective morphisms. The fibrations are the
morphisms which have the right lifting property against trivial cofibrations.

Theorem 1.2. (Lefèvre–Hasegawa)

● This data gives a model structure on Cog and Ω preserves cofibrations
and trivial cofibrations and B preserves fibrations and trivial fibrations,
so (Ω,B) are a Quillen adjunction. Actually Ω and B are Quillen equiva-
lences. In other words they induce an equivalence of homotopy categories.

● All objects in Alg are fibrant; all objects in Cog are cofibrant. An algebra
A is cofibrant if and only if it is a retract of ΩC for some C in Cog and
a coalgebra C is cofibrant if and only if it is isomorphic as an underlying
graded coalgebra to T cV for some V .

● If A and A′ are fibrant and cofibrant in Alg, then f ∼ g as maps A→ A′ if
and only if there exists h ∶ A→ A′ of degree −1 with hµA = µA′(f ⊗h+h⊗g)
and f − g = dA′h + hdA. There is a dual statement for coalgebras.

So we have

Alg

Cog Cogcf

BΩ

and to complete the corner, we should pass to Alg∞ the category of augmented
strongly unital A∞ algebras, which is equivalent to considering non-unital A∞ al-
gebras. This has this sequence of maps (A, bn), where bn ∶ A⊗n → A, with all maps
of degree 1. The unital means there is a unit element and it should be zero unless
n = 2.

As before we want to define something like Hom●
k(C,A) for C ∈ Cog and A ∈

Alg∞. We want to equip this with, this has an A∞ structure and there is a unit
and stuff like that.

If f is a map, and we want to define b1(f) = bA1 f − (−1)∣f ∣fdC . For n ≥ 2, we
have

bn(f1, . . . , fn) = bAn (f1 ⊗⋯⊗ fn)∆(n),
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and we need to check that Hom(C,A) with these multiplications is an A∞ algebra.
It’s not hard to check this but I won’t prove it all. I’ll show one simple thing. If
n = 2, then b2(1⊗ b1) + b2(b1 ⊗ 1) + b1b2 should be zero, and this is

(−1)∣f1∣bA2 (f1 ⊗ (bA1 f2 − (−1)∣f2∣f2dC))∆ + bA2 ((bA1 f1 − (−1)∣f1∣f1dC)⊗ f2)∆

+ bA1 (bA2 (f1 ⊗ f2)∆) − (−1)∣f1∣+∣f2∣+1bA2 (f1 ⊗ f2)∆dC
and [some cancellation]. So one can check A∞ relations, so this defines an A∞
algebra structure on the Hom set.

The equation is something like

∑
n≥1

bn(τ ⊗⋯⊗ τ) = 0,

and now τ ∈ Hom0
k(C,A).

There is a canonical way to consider an algebra by setting all higher multiplica-
tions to be zero, so this equation is the same as b1(τ)+b2(τ ⊗τ) = 0. So then in this
case by carefully considering the sign, this is nothing but the equation Dτ+τ ∗τ = 0.

So we want to define the set Tw∞(C,A) as the solutions to this equation.
Then this comment Alg ⊂ Alg∞, if A is an algebra, then this set is the same as

Tw(C,A).
As before one can regard this as a functor Cog → Set which sends the coalgebra

C to Tw∞(C,A). I’ll skip the proof of functoriality (this is actually very easy, you
just pull f ∶ C ′ → C out to the left, this is a standard argument we’ve used many
times).

This functor is representable. You define B∞A for an A∞ algebra as T c(A), the
reduced version, then we want to define a differential, the differential is the sum
of 1⊗− ⊗ bi ⊗ 1⊗−, and one can check that d is a coderivation with respect to the
coproduct. But I want to skip. So it’s almost the end. So I want to show that
representability Tw(C,A) ≅ HomCog(C,B∞(A)), I want to prove this, and before
I prove that, let’s consider the canonical projection B∞A → A, this is degree 0,
and I want to show that this is a twisting cochain in Tw∞(B∞,A), and then by
universal properties, for any twisting cochain τ ∶ C → A this lifts to a coalgebra
map C → B∞A which pulls the canonical twisting cochain on B∞A to the given
one on C.

Let me mention some facts. If V is a graded vector space then the set of A∞-
structures on V is in one to one correspondence with coalgebra differentials on TSV .
If A and A′ are A∞ algebras, then HomAlg∞(A,A′) is in one to one correspondence
with HomCog(B∞A,B∞A

′). This means that B∞ is a functor from A∞ algebras to
Cog, it’s actually fully faithful.

Theorem 1.3. If C is a coalgebra, then C is fibrant cofibrant if and only if C ≅
B∞A for some A∞ algebra.

This implies that the functor is essentially (quasi-)surjective. Then this is very
close to an equivalence of categories, it’s a (quasi-)equivalence. Moreover, C in Cog

has a minimal model where I ∈ Cogcf and I
∼Ð→ C and there exists f−1 ∈ Cog if

and only if there is an inverse in Ho(Cog). The theorem is that any cocomplete
coalgebra has a minimal model, and on the other hand, if Amin is a minimal model
for A, then this minimal model, this is a kind of A∞ algebra with b1 = 0. Of course,
this is quasi-isomorphic to A.
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Then the functor B∞ makes a bridge between the two minimal models. B∞ of
a minimal model of A. is isomorphic to the minimal model for B∞(A).

Now I can draw my diagram.

Alg Alg∞

Cog Cogcf .

B B∞Ω

And if you take homotopy categories everything is an equivalence of categories. So
in some sense we have four different descriptions of one algebra, but homotopically
they are all the same, there are no new homotopic descriptions. In particular, the
A∞ description is homotopically not new but gives several types, that’s the story I
wanted to tell. I will stop here.

2. Feb 6: Christophe Wacheux: A∞-structure on Fukaya categories II

I have way too much stuff. Last time I showed the formula of the derivative that
we will, the differential of the Floer complex.

∂(p) = ∑
q∈L0⋔L1

[u]∶µ([u])=1

#M(p, q; [u], J)Tω[u]q.

In order to make it so that this is a zero dimensional manifold, I want to count
only Maslov index 1 holomorphic disks. Because I have an orientation, in the good
case, a spin structure on the Lagrangian, I can do this and get an orientation on
the moduli space and get signs so that I can now count with signs, and that’s the
count I put here. This ω[u] is ∫D u

∗ω. There is lots of reason for this not to be
well-defined. This is a compactness issue which is taken care of using the Gromov
compactness theorem.

This, as we saw earlier, belongs to ΛR, the Novikov ring.
The plan today is to try and define some of the things, I want you all to see

the actual formula for the k-ary operation, and then after that I discuss as many
details as possible.

Just to mention, the theorem was to show that

Theorem 2.1 (Floer). If k = Z2 and [ω].π2(M,Li) = 0, then

(1) ∂ is well-defined,
(2) ∂2 = 0,
(3) HF (L,L) ≅H∗(L,Z2), and
(4) HF (L0, L1) doesn’t depend on the choice of J , of isotopy class of Li

This result helps prove the Arnold conjecture, at least in this case. Then it was
extended to another very nice setting. It was extended to the case which is called
monotone, also a very important case, Yong-Geun did it, that ∫D u

∗ω = λµ([u]) for
u representing a class in π2(M,L).

Now I’ll make a huge jump to define, to give any sense to this formula, this is
assuming everything works fine. I should write “AEWF,” and I’ll try to give sense
to what this acronym means. Now the product that we will call m2, Now you
have a pair of pants [sic]. It’s the disk with three marked points, each of which is
sent to one intersection (between L0, L1, and L2 pairwise). So z0 goes to q in the
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intersection of L0 and L2 and zi to pi in the intersection of Li−1 and Li. Then we
have

m2 ∶ CF (L1, L2)⊗CF (L0, L1)→ CF (L0, L2)
given by

m2(p2 ⊗ p1) = ∑
q∈L1⋔L2

[u]∣µ[u]=0

#M(p1, p2, q; [u], J)Tω[u]q.

This is the formula. And I guess now we start to understand that we have some pat-
tern going on. The whole general operation mk ∶ CF (Lk−1, Lk)⊗⋯⊗CF (L0, L1)→
CF (L0, Lk) is given by

mk(pk ⊗⋯⊗ p1) = ∑
q∈L0⋔Lk

[u]∣µ([u])=2−k

M(p1, . . . , pk, q; [u], J)Tω[u]q.

You can guess, these verify A∞ relations. Maybe this is not worth taking time to
verify.

I really want to address a bunch of problems. If I want an honest A∞ structure,
then I need to define a grading. So now I want to talk about Maslov index and
grading of CF . First we need an orientation on the Lagrangian if you want to
work over something other than Z2, then you will need to be able to define a
consistent grading. The way to do this is with the Maslov index. If you have your
Lagrangian manifold living in some big ambient symplectic manifold, if you look
at the tangent space, then TpL is a Lagrangian subspace of TpM . What are the
Lagrangian subspaces of M? If I give you a distribution of Lagrangian subspaces,
does it integrate to a Lagrangian submanifold? So if I say now, I look at, just,
on TpM it’s just the same as R2n, I can locally trivialize, and I define LG(n) as
the set of Lagrangian vector spaces of R2n, the “Lagrangian Grassmanian.” There
is a result which tells you that this is isomorphic to U(n)/O(n). You can look

at det2 ∶ U(n)/O(n) → S1, and this goes, for π1[det2] ∶ π1(U(n)/O(n)) → Z, and
that’s an isomorphism.

Essentially this is going to define µ. I’ll define two things, I’m going to define
the Maslov index of a holomorphic strip, the Maslov class of the Lagrangian, and
the degree of a point. Let me write, now given u a J-holomorphic strip, let me
remind you how this looks [picture].

If I look at u∗R×{i}TLi ∶ [0,1] → LG(n) and call that `i, then my path of La-

grangian subspaces, since L0 and L1 intersect transversally, then

`0(0) ⋔ `1(0) and `0(1) ⋔ `1(1).

As you said, Gabriel, I want to identify (R2n, ω0) ≅ (C, ω) and I want to say
that `0 ∈ LG(n), there exists an A0 ∈ GLn(C) such that A0(`0(0)) = Rn and
A0(`1(0)) = iRn.

Now I call this λ(t) ∶= A−1
0 (eiπ2 tRn). [pictures].

Now I identify what is the path going from the tangent to the tangent, between
`0(0) and `1(0). I can do the same stuff with a different identification for λ1(t),
between `0(1) and `1(1). Now I will define the Maslov index of a J-holomorphic
strip.

Definition 2.1. Define γ ∶ [0,1]→ LG(n) by γ = `0 ● λ1 ● `−1
1 ● λ−1

0 and then

µ([u]) ∶= π1[
2

det][γ]
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and that’s the Maslov index of a strip.

We’ve defined the Maslov index of a strip. In order to start doing all this business
I need a spin structure, which is a choice of a section in the double cover of U(n),
or O(n).

Now to define a Z-grading, I will need exactly to make sure that µ[u] depends
only on ∣p∣− ∣q∣ but not on [u] even if I didn’t define it yet. To make it happen, one
thing is to ask for 2c1(TM) = 0, which, now you get a hint for why this works in Z2.
Why do you need this? I’ll define something more elaborate than a Lagrangian,
something we called a [unintelligible]Lagrangian submanifold, taking a universal
cover of the Lagrangian Grassmannian.

So c1(TM) tells me, take Θ ∈ ∧nT ∗M ⊗ C, then ϕ(D) = arg(Θ∣D) ∈ S1. Now
you define ϕ̃(D), a choice of smooth lift of ϕ(D), and since π1(LG(n)) is Z, you
can think of the universal cover,

3. February 13: Taesu Kim, an example of an A∞ category

I’ll talk about the Fukaya category, given a symplectic manifold (M,ω) which is
oriented, compact, and spin and its spin Lagrangian submanifolds
F →M is the frame bundle whose fiber is frames of the tangent space. A frame

is, given a basis of TpM , the fiber Fp is the set of ordered orthonormal bases of
TpM . So I have ιc1(TM) = 0 and µL = 0 in H1(L,Z) (this is the Maslov class)
which are to give us a Z-grading. Then we want [ω]π2(M,L) = 0 in order to avoid
disk bubbling.

With this data we can define F (M,ω), the Fukaya category of (M,ω).
Let’s talk about the Maslov class. Suppose that 2c1 = 0. This means that

(∧nCT ∗M)⊗2 → M has a nonvanishing section, Θ. In local coordinates this looks
like v1, . . . , vn ↦ Θp(v1 ∧⋯ ∧ vn ⊗ v1 ∧⋯ ∧ vn), and then you can write

Θp(v⃗)Θp(v⃗)
Θp(v⃗)Θ̄p(v⃗)

which should be in S1. So then we can define ϕΘ(p) ∶= Θ2(v)
∣Θ2(v)∣ . So for ` in Gr(n), the

Lagrangian plane, so inside TpM we can find TpL and for ` we assign this fraction
above for arbitrarily chosen v. Then choose a lift of this map.

[long discussion]
So for each Lagrangian we have an index, and if they vanish, we can get some

sort of loop by doing something in the cover at the intersection points. Then we
get the Maslov index of a loop, and that’s how we get the Maslov index for each
intersection point.

[Long discussion]

4. February 20: Kyoung-Seog Lee: Hochschild homology of DG
categories

Today I will talk about both homology and cohomology of something. First let
me discuss Hochschild homology and cohomology of algebras.

Let k be a commutative ring and R be a k-algebra and M be an R-R-bimodule.
Here R can be a non-commutative k-algebra.

In this setting I can associate a simplicial k-module M ⊗R⊗∗ with

[n]↦M ⊗R⊗n
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and for concreteness, M ⊗R⊗0 =M .
I will make a complex

0←M
δ0−δ1←ÐÐÐM ⊗R d←ÐM ⊗R⊗R

with d = ∑(−1)i∂i.
Here δi(m⊗ r1 ⊗⋯⊗ rn) is

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

mr1 ⊗ r2 ⊗⋯⊗ rn i = 0

m⊗ r1 ⊗⋯⊗ riri+1 ⊗⋯⊗ rn 0 < i < n
rnm⊗ r1 ⊗⋯⊗ rn−1 i = n.

And σi(m⊗ r1 ⊗ rn) =m⊗⋯⊗ ri ⊗ 1⊗ ri+1 ⊗⋯⊗ rn.
So call C(M ⊗R⊗∗) the chain complex above, and then

Definition 4.1. The Hochschild homology Hn(R,M) is the homology HnC(M ⊗
R⊗∗).

When we look at M ⊗ R → M , the differential takes m ⊗ r to mr − rm, so
H0(R,M) ≅ M/[M,R]. In the same setting I can define a cosimplicial k-module,
where n goes to Homk(R⊗n,M), this is k-linear maps from R⊗n to M . We can
again define a cochain complex

0→M → Homk(R,M)→ Homk(R⊗R,M)→ ⋯

and let me call this CHomk(R⊗∗,M) and d is defined the same way, d = ∑(−1)i∂i
and let me define ∂i as follows. This is a k-module of functions, so (∂if)(r0, . . . , rn)
is

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

r0f(r1, . . . , rn) i = 0

f(r0, . . . , riri+1, . . . , rn) 0 < i < n
f(r0, . . . , rn−1)rn i = n.

We can define σif(r1, . . . , rn) = f(r1 ldots, ri,1, ri+1, . . . , rn).

Definition 4.2. The Hochschild cohomology H∗(R,M) is the k-module which is
the cohomology of the cochain complex Hn(CHomk(R⊗∗,M)).

You have 0 →M → Hom(R,M). If I have m, this goes to ∂0(m) − ∂1(m), this
is a function, which when you apply it to r, by definition, this is rm −mr. So
H0(R,M) consists of the m in M such that rm =mr.

Let us compute H1(R,M). This is very closely related to derivations. I’ll write

0→M
dÐ→ Hom(R,M) dÐ→ Hom(R⊗R,M)

and if I take f in Hom(R,M) it goes to ∂0f − ∂1f + ∂2f and

(∂0f − ∂1f + ∂2f)(r0 ⊗ r1) = r0f(r1) − f(r0r1) + f(r0)r1

which means that f(r0r1) = r0f(r1) + f(r0)r1.
So the kernel of d is nothing but the set of k-linear maps f ∶ R →M satisfying

this condition, which we call the k-derivation condition. So Derk(R,M).
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I should mod this out by the image of M , so M goes to Hom(R,M), so m goes
to fm which is r ↦ rm −mr, and you can check that fm(r0r1) is a derivation:

fm(r0r1) = r0r1m −mr0r1

= r0(r1m −mr1) + (r0m −mr0)r1

= r0fm(r1) + fm(r0)r1.

So we call the principal derivations

PDerk(R,M) = ⟨fm⟩.

So

H1(R,M) ≅ Derk(R,M)/PDerk(R,M).

Definition 4.3. Let R be a commutative k-algebra. We can define the Kähler
differential of R over k is

ΩR/k = R⟨dr∣dα = 0 ∶ α ∈ k⟩.

So if R = C[x1, . . . , xn] then ΩR/k = R⟨dx1, . . . , dxn⟩.
This is an example,

Proposition 4.1. Let R be a commutative k-algebra and M be an R-R-bimodule,
rm =mr. Then H0(R,M) ≅M and H1(R,M) ≅M ⊗R ΩR/k.

This is dual to derivation, this is dual to 1-forms.
Hochschild cohomology is related to derivations; homology is related to 1-forms

in R.
When R is a polynomial ring, then H1(R,R) ≅ Ω1

R/k and H1(R,R) ≅ T 1
R/k.

Let R = C[x], and k = C, and let us compute Derk(R,R). This is, by definition,
k-linear homomorphisms R → R such that f(r0r1) = r0f(r1)+f(r0)r1. In this case,
this is a function, a k-linear map. f(x) = 1f(x)+f(1)x. This implies that f(1) = 0.
Then f(x2) = 2xf(x).

I want to claim that Derk(R,R) ≅ R⟨ ∂
∂x

.

So then for C[x] the principal derivations are 0 so H1(R,R) ≠ 0.

Exercise 4.1. Let R = k[x]/(xn+1 = 0). Then if 1
n+1

∈ R, we hav Hi(R,R) ≅
Hi(R,R) ≅ R/(xnR) for all i ≥ 1.

When R is C[x1, . . . , xn], M = R, and k = C, then H0(R,R) ≅ R and H1(R,R) ≅
Rdx1 ⊕⋯⊕Rdxn ≠ 0 and H1(R) ≅ R ∂

∂x1
⊕⋯⊕R ∂

∂xn
then this is nonzero too.

On the other hand for R = C, you get Hi(R,R) ≅Hi(R,R) ≅ 0.
Let me show you one more example. This first homology is related to Kähler

differentials. Let me give you one more, related to H2. As I told you, H2 is related
to deformation. Let me show you. So a square zero extension of R by M is a

k-algebra E with E
εÐ→ R a projection such that ker ε is an ideal of square zero and

M ≅ ker ε as R-modules. So 0 → M → E → R → 0 is short exact. This is called a
Hochschild extension if 0 →M → E → R → 0 is k-split. This is an algebra, so as a
k-module, it’s isomorphic to R⊕M . As an algebra, I have a multiplication, I have
(r1,m1)(r2m2) = (r1r2, r1m2 +m1r2 + f(r1, r2)).

So f ∶ R ⊗ R → M , and because this is an associative algebra, we should
have (r1,0)(r2,0)(r3,0) gives some condition. So you get (r1r2, f(r1, r2))(r3,0) =
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(r1r2r3, f(r1, r2)r3 + f(r1r2, r3)) and I can do the other side and add up, and you
eventually get a condition that f is a cycle, that

r0f(r1, r2) − f(r0r1, r2) + f(r0, r1r2) − f(r0, r1)r2 = 0

and this is nothing but df(r0, r1, r2), which is just ∂0 − ∂1 + ∂2 − ∂3. And from
this associative rule, this says that f ∈ Z2( ) of our cochain complex. If I choose
another section, I had to choose a section, and if I choose another σ′ I get another
f ′ and we can check that the difference is in B2( ) of our cochain complex. I want
to say that this kind of extension, the equivalence class of Hochschild extensions is
in one to one correspondence with H2(R,M). If M and R are commutative, then I
have some commutative version which corresponds to another version of Hochschild
cohomology.

Why is this kind of thing interesting? When M is R, then this kind of diagram
is something like this. If I have Speck[ε]→ Speck and have SpecR → Speck, then
this diagram, this algebra.

So what this means, if you look at R = k[x]/(x2), you have this kind of sequence:

0→ (x)→ R → k→ 0

and this is exactly that situation. As Damien said, when I have this kind of 0 →
R → E → R → 0, then it means that I have some kind of, you have the deformation
space of Spec R, and here you have some kind of choice of direction, to deform the
algebra. This has this kind of feeling.

[Is it true that H2(R,R) is the same as equivalence classes of flat algebras so
that when I point at k, it reduces to R?]

Yes. So H2 measures deformations of a certain kind of structure. Here it’s
deformations of algebra. This is some feeling I have.

I believe you have some feeling of this now.
Let me just state some general feeling. Let me write some general theorems that

I think are quite important.
Let me give another definition of Hochschild homology. Let me define Re to

be R ⊗k R
op. This op means it’s the k-algebra with rṡ = sr ∈ R. Then this is a

k-module, and then a right R-module M is the same as a left Rop-module. Then
an R-R-bimodule is a left Re-module, (r⊗ s)m = rms. In the same way, it’s also a
right Re-module.

You can check that, using the bar resolution, if R is flat over k then H∗(R,M) ≅
TorR

e

∗ (M,R). If R is projective over k then H∗(R,M) ≅ Ext∗Re(R,M). Here R is
an R-R-bimodule, and M is one, so you can make everything a left Re-module.

Let X be a smooth (projective?) variety over k, let k = k̄ of characteristic zero.
Then

HH∗(X) ∶=H∗(X ×X,∆∗OX ⊗L ∆∗OX))

and

HH∗(X) ∶= Hom∗
X×X(∆∗OX ,∆∗OX).

Theorem 4.1 (Hochschild–Kostant–Rosenberg). X is a smooth projective variety
of dimension n, then

HHi(X) ≅
n

⊕
p=0

Hi+p(X,ΩpX)
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and

HHi(X) ≅
n

⊕
p=0

Hi−p(X,∧pTX).

Finally let me discuss the Hochschild homology and cohomology of a dg algebra
or category. Let C∗ be a dg algebra. Then C∗ is a dg bimodule over C∗, and
HH∗(C) = C ⊗L

C⊗Cop C and HH∗(C) = RHomC⊗Cop(C,C).
Whenever I have X a smooth projective variety, I can consider the derived

category D(X), and it is known that this has a so-called strong generator. Let E
be a strong generator of D(X). I can consider C = RHom(E ,E). I mean I have a
category, and a generator, and I have the endomorphism algebra of the generator.
Then I can consider the Hochschild homology and cohomology of this algebra to
be the Hochschild homology and cohomology of this category.

For example, D(P1), this is generated by ⟨O,O(1)⟩, the strong generator is
O ⊕ O(1), and C is the Kroenecker quiver on ● ⇉ ●. You can compute that
HH2(C) = 0 because P1 is a rigid variety. So the right hand side of HKR is easy
to compute. Sometimes we can compute it.

5. March 6: Taesu Kim: Introduction to the Fukaya category IV (or
III)?

Let (M,ω) be a symplectic manifold and let L an oriented spin closed Lagrangian
submanifold. We put some conditions on these geometric objects, for instance

● that the first Chern class of M is 2-torsion,
● that µL which lives in H1(L,Z), called the Maslov class of L, vanishes, and
● that [ω]π2(M,L) = 0.

Call these conditions (*). The first two of these are to give us a Z-grading on Floer
cochain complexes. The final condition is to prevent so-called “disk bubbling.” Let
me explain what this means later, so that we have the ∂2 = 0 condition.

The spin condition is needed to put an orientation on the moduli space of pseu-
doholomorphic disks. We need this to appropriately count the number of rigid
elements so that we can define the differential of the chain complex.

This is our geometric setting. Here are, what we called the Fukaya category, this
is an A∞-category F (M,ω). Its objects are Lagrangian submanifolds satisfying (*).
The Floer chain complex between L1 and L2 is the direct sum over intersection
points of Λp, where Λ is the Novikov ring. We assume L1 ⋔ L2 for this definition.
Later we’ll modify this in some way. We should consider the Hamiltonian isotopy
φtHL1,L2

associated to HL1,L2 ∈ C∞([0,1] ×M ;R) so that L1 ⋔ φ1
HL1,L2

(L2) and

then define CF (L1, L2) as CF (L1, φ
1
HL1,L2

) which a priori depends on HL1,L2 and

do this in a way that makes these transversal. This is a Λ-module with Z-grading.
This construction anyway includes the case CF (L,L). What about composition

rules. We consider a map u from the disk with fixed holomorphic structure to M
with fixed compatible almost complex structure J . We mark points z0 to zd on
the boundary of the disk. We are given L1, . . . , Ld, L0, objects in F (M,ω) (i.e.
Lagrangians satisfying (*) which transversally intersect).

[pictures]
The conditions are that u(zi) = pi, and u is J-holomorphic in that ∂̄J(u) = 0.

The image of the arc between zi and zi+1 should lie in Li and [u] = β. Then

M̃(p1, . . . , pd, p0, β)
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is the set of such maps. In nice cases this has a manifold structure and the expected
dimension (assuming generic J) this is ind(D∂̄J(u)) = d+1+ ind(U), where ind(U)
is the Maslov index of the disk, and so this is d + 1 −∑di=1 ∣pi∣ + ∣p0∣. Then we can
reduce by an equivalence relation and get

M(p1, . . . , pd, p0, β) = M̃(p⃗, β).

The dimension of PSL(2,R) is three, so the expected dimension is d−2−∑d1 ∣pi∣+∣p0∣.
Then M(p⃗, β) can be defined, a compactification so that its boundary consists

of maps with image nodally glued disks. Since [ω]π2(M,Lj) = 0, the area of this
disk should be zero and so this cannot happen.

So now we can define the composition between these morphisms

µd ∶ CF (Ld−1, Ld)⊗⋯⊗CF (L0, L1)→ CF (L0, Ld)

by

µd(pd, . . . , p1) = ∑
q∈Ld∩L0

#M((p⃗, q), β)Tω(beta)q

where the sum is over q ∈ Ld ∩L0, where ∑ ∣pi∣ − ∣p0∣ = d − 2, and β.
We have to check that the operators µd satisfy the A∞ relations. For d − 1 =

∑ ∣pi∣ − ∣p0∣, then it’s a compact 1-manifold, so a disjoint union of intervals and
circles. So the signed count of a boundary of this 1-dimensional moduli space is
zero.

This says that the signed count of nodal configurations of the appropriate dimen-
sion with one node are zero. Then this can be parameterized by gluing parameters
somewhere, and near the limit there is a one-to-one correspondence between the
nodal and glued smoothed configurations. The glued configurations, counting them
is about the composition of two copies of µj for some smaller j. Then the sum being
zero says that this sum of compositions is zero. Let me put the sign as a ± and
that’s how we get the A∞ relation. Hence the Fukaya category is an A∞ category.

One important point is that it’s cohomologically unital, so that HF (M,ω) is
unital.

The unit is in HF 0(L,L), which is isomorphic to H0(L, [Λ]), and this is the
Poincaré dual of [L].

6. Calin Lazariou: A∞ structures on categories of matrix
factorizations

Everything in the mathematics literature here is both trivial and trivially wrong.
Not so much is known about this either in mathematics or in physics.

Why is the obvious idea trivial? Let A be a dg category. For any two objects,
the space of morphisms HomA(a, b) is R-module. Then R is a unital commutative
ring. This is already an A∞ category of a very particular type. There’s nothing to
do.

So what would you do? You’d consider a minimal model. So the first (and failed)
attempt. Any A∞ algebra has an anti-canonical (dg) and canonical (minimal)
model, which is finite dimensional if the homology is finite dimensional. So assume
that A is (cohomologically) hom-finite, compact, or proper (these are all the same
thing, please ask Kontsevich why he changed the terminology three times in the
past ten years). I will taken HomA(a, b) to be Z/2Z-graded, and I’ll denote this
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Homk(a, b). That is, ⊕Hα
d Homk(a, b) is finite dimensional over k. Here k is a

field in R and R is a k-algebra, and k ⋅ 1 = k.
If you have this, then you have a minimal model, which is realized on the total

cohomology category H(A). It’s the category which has the same objects as A and
the homs are the graded R-modules of cohomology. This is completely trivial by
the minimal model theorem.

In the case of a proper dg category, this has the pleasing property that it’s a
finite dimensional model.

The anti-minimal model has the unpleasing property that the underlying space
is infinite dimensional.

This is trivial! All you have done is the Kadeishvili minimal model theorem with
more than one object. It’s also wrong, misdirected, wrong in the philosophical sense
of Kant. It’s the wrong question to ask, it’s the wrong way to think about this.

The question is not to find the minimal model. You haven’t done anything.
There is a traditional line Laudal, various people, Manetti, that says there are
these Massey products controlling the deformation theory and the nicest way to
arrange these is with a minimal model. Say I want the moduli stack of an object a,
you can build it by representing a deformation functor DefA(a). You can represent
local Artinian rings, and this can be written as the deformation functor of the
commutator L∞ algebra induced on EndA(a) = HomA(a, a) by the minimal model
of EndA(a, a).

If you’re interested in deformations you can do this, build a moduli stackMa, an
∞-stack in general. This is again trivial in the sense that it was well-known before,
you just put objects in what was known before, and again, not so interesting,
because what you really want is to understand the structure of Ma. There are
physical reasons to expect this to be a non-commutative Calabi–Yau scheme.

So you can find the literature on this but this is the wrong problem. So what’s the
right way to think about it? The right way to think about the problem is via string
field theory. This really works correctly if you have some sort of “Calabi–Yau”-ness.
Let me explain what I mean. Your dg category, as I said, I pick some base field
and can consider it as a dg category over k, it’s Z/2Z-graded, and I’m fixing µ in
Z/2Z. I say A is µ-Calabi–Yau if there exist cyclic homologically non-degenerate
linear maps

tra ∶ EndA(a)→ k

of degree µ for every a in A. By non-degenerate I mean that the bilinear pairing
defined by taking HomA(a, b)×HomA(b, a)→ k→ k[µ], this is a dg map with zero
in the target, cyclic so that (u, v) = tra(v ⊗ u) = trb(u⊗ v) and this defines a non-
degenerate bilinear form on the cohomology. I required my space to be hom-finite;
otherwise I’d need to topologize and require perfectness. You can never have a
non-degenerate bilinear form on two vector spaces of infinite dimension. You want
this to be invariant up to sign up to the obvious permutation. You want it to be
compatible with the differentials here, so that the trace of a boundary is zero, and
it should induce a nondegenerate pairing on the cohomology.



DERIVED SEMINAR 15

I can write down the other properties explicitly:

tra(v ○ u) = (−1)∣u∣∣v∣ trb(u ○ v)

tra((dv) ○ u + (−1)∣v∣v ○ (du)) = 0

tra(v ○ u) = 0 unless ∣v∣ + ∣u∣ = µ
tra ∶H(EndA(a))→ k[µ] is nondegerate.

A Z/2Z-graded category with these maps, such a category, with degree µ non-
degenerate traces, is usually called a Calabi–Yau category, and this is the extension
to the dg world, except that you only require the non-degeneracy at the homological
level.

I will tell you the interesting problem. What does this have to do with matrix
factorizations.

Theorem 6.1. Let X be a smooth Stein manifold which is holomorphically Calabi–
Yau in the sense that its canonical line bundle is trivial. Let W be a holomorphic
function on X such that the critical set is compact (in this case finite). Then the
Z/2Z-graded dg category of matrix factorizations PF (X,W ), of projective analytic
factorizations of W is proper and µ-Calabi–Yau with µ ≡ d (mod 2) where d is the
dimension of X as a complex manifold.

One of the nicest types of Landau–Ginzburg pairs is (X,W ) where X is Stein
and W is holomorphic. I insist on this compactness to get a proper category.

What is KX? It’s the top wedge product ∧dT ∗X (the holomorphic cotangent
bundle) is trivial, isomorphic as a holomorphic line bundle to OX .

There is a particular example of Gromov’s principle that says that the topolog-
ical and holomorphic classifications coincide in this setting (Stein) so topologically
trivial (first Chern class vanishes) implies holomorphically trivial.

If you try to do a non-Calabi–Yau version, then you get an anomaly in the U(1)X
symmetry. So twisting with KX like Pantov, Katzarkov, Pomerleano, Orlov, et
cetera, have done, is physically wrong. Then you have to do something very weird
on the other side to the Fukaya category. What is behind is that the correct data,
you have to build an open-closed field theory.

Why did I mention compact? There’s a version of this category, the so-called
correct version, which doesn’t require Stein, which is not the version they have
proposed. There’s something called DF which is again triangulated and Z/2Z-
graded and makes sense for any X complex non-compact, and any W holomorphic
with compact critical locus. There’s a hypercohomology description, but this is a
2-periodic thing.

Of course any affine variety is a Stein analytic space, and in that case you can
do an algebraic version of this category, but this is a much nicer statement, I think.

So what is PF (X,W )? They are pairs (P,D) where P is a Z/2Z-graded O(X)-
module, degreewise projective and finitely generated. And D is an endomorphism
of this module such that D2 =W . The morphisms are the obvious ones, if I give you
a1 = (P1,D1) and a2 = (P2,D2), then the hom space in PF is HomO(X)(P1, P2),
with the defect differential

da1,a2(f) =D2 ○ f − (−1)∣f ∣f ○D1.

There’s a Serre–Swan theorem for Stein manifolds. Their condition is satisfied
by the sheaf of holomorphic functions on a Stein manifold. [Something about
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Cartan Theorem B.] This says that finitely generated projective O(X)-modules
are equivalent to holomorphic vector bundles.

There’s a general result that if X is a non-compact complex manifold with KX ≅
O(X). Let W have compact critical locus. Then DF (X,W ) is proper and d
(mod 2)-Calabi–Yau. This is the twisted Dolbeault category of the holomorphic
factorizations. The objects are (E,D) where E is a Z/2Z-graded holomorphic
vector bundle and D ∈ Γ(X,End(E)) such that D2 =W id.

The morphisms between two is A0,∗(X,Hom(E1,E2)) equipped with the differ-

ential ∂̄ + ∂a1,a2 , where this latter on ω is D2 ○ ω − (−1)∣ω∣ω ○D1.
The way I prove this with Dmitry is by combining Serre’s original result with

sophisticated spectral sequence arguments. This is a very general example.
I didn’t introduce this notion of Calabi–Yau category, of course.
This is still not what you need. I will tell you in a moment how this is induced

by a holomorphic volume form. But you need more, you need this notion of a
Calabi–Yau structure, which is more than these traces.

Definition 6.1. Let A be proper, k-linear (I’ll assume k of characteristic zero, my
interest is in C) dg category. A cochain level Calabi–Yau structure (of degree µ)
on A is a linear map from the cyclic complex θ ∶ CC∗(A)→ k[µ], so

(1) θ ○ δ = 0
(2) θ∗ ∶ HC(A) → k[µ] induces nondegenerate traces on H(A) via precompo-

sition with the natural map q from H(A) to the Hochschild complex, and
then this gives a natural map to to the cyclic homology. So this restriction
is a homologically non-degenerate trace.

.

So that’s the Calabi–Yau structure. They only cared about the cohomology
class, but this is a trivial extension, this was basically introduced by Kontsevich–
Soibelman. To be precise, string field action is a strict cyclic structure, where the
traces induecd by θ are nondegenerate at the cochain level.

So either this cyclic structure is established at the level of the minimal model
or you topologize and require a perfect pairing. Everything you see here is defined
for any A∞ category. I can consider a minimal A∞ category which is proper, and
there require nondegeneracy off-shell.

The punchline, the point, there’s a theorem, the particular case was proved by
Sklyarov, that says the cohomologically non-degenerate traces of DF (X,W ) have
a natural extension to a chain level µ-Calabi–Yau structure which is induced by
a cubic open string field theory (in the sense of Witten). Cubic means that you
have only, you have a dg model, but the trace is non-degenerate off-shell. This is
something with compact supports. The trace is induced by the volume form. You
do a gauge-fixing procedure, trying to find a quasi-isomorphic model by projecting
on a small tubular neighborhood of your critical locus.

A minimal Calabi–Yau structure or strictly cyclic minimal A∞-category is a
minimal A∞-category which is proper, the spaces are finite dimensional, and the
traces are strictly cyclic with respect to the A∞ structure, so

⟨f0,mn(f1, . . . , fn)⟩ = (−1)whatever⟨f1,mn(f2, . . . , fn, f0)⟩.

In practice this was hard to construct, and Sklyarov gives you such a theory. You
replace DF with a compactly supported version DFc, which naturally includes in
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DF , so the objects are the same, but the morphisms are compactly supported forms
of type 0,∗ as before. If Ω is a volume form, a holomorphic section of KX/{0},
then you have for ω ∈ EndDFc(E,D) the following:

trc(ω) = ∫ Ω ∧ str(ω)

and you have δW = δ+∂a1+a2 , and this is a perfect trace if DFc(X,W ) is topologized
using the Fréchet topology. Then the cubic string field action is the functional S
with

S(φ) = ∫
X

Ω ∧ [str(φδWφ) +
2

3
str(φ3)]

a (Z/2Z-graded twisted-by-W , categorified: φ ∈ End(A) = ⊕a,bHom(a, b)) Chern–
Simons type action).

But this only makes sense on the compactly supported one, and it uses smooth
things, none of the algebraic geometers and few of the complex geometers would
touch this.

Then what you do, the idea is the following, how does that object transfer
into something defined on the other category. These are dg categories. You can
prove that the map induced on cohomology is an isomorphism, so that HDFc is
a quasi-equivalence. If we know anything about quasi-equivalences, there should
be a (non-unique) quasi-equivalence. This is not just an ordinary map, it’s an A∞
quasi-isomorphism. I’m sure you’ve seen this at least for algebras. It inverts i. It’s
an ordinary thing that commutes with differentials, but it has an inverse with many
pieces.

You want to make a choice, getting rid of anything smooth, Fréchet, et cetera.
You choose some tubular neighborhood of the (compact) critical locus and try
to construct π1 as a projector, I won’t give the formula, and then πn are given
by some universal formula using π1 and some property. This depends on the
choice of infinitesimal neighborhood. You take some sort of inductive limit in
which this neighborhood shrinks to ZW and in that limit you use a residue theo-
rem of [unintelligible]–Andersson (not Grothendieck, you need to upgrade this, a
representation of Bochner–Martinelli type) so when you do this you find that all
the θn of the corresponding Calabi–Yau structure have an expression in terms of
these W–A residues.


