
CGP DERIVED SEMINAR

GABRIEL C. DRUMMOND-COLE

1. March 14: Damien Lejay (Categories)

Thank you for being here, for supporting it by coming to the first lecture. I’ve
named this the derived seminar and set up a webpage for the seminar, with pdfs
that would be the skeleton of the seminar and I will put information like who is
going to talk next and what it’s going to be about. I’ll upload the pdfs every week.
If you want to recall anything then it’s just for you.

I’ve been thinking about the roadmap and how to articulate the things on the
wishlist. Today is the first day and I’ll talk for two hours about category theory.
There will be another session where we do category theory again. Then one session
of introduction to the problematics of differential graded categories and why we are
interested in these tools. One session of introduction, one session just on differential
graded categories, then two sessions on model categories. Then we’ll study differ-
ential graded categories again with those tools. This will take us through April.
Then we’ll have a session on triangulated categories. Already we will have seen
these things. then we will have ∞-categories, stable ∞-categories, and comparison
theorems. I won’t plan more than that but by that time we will want to change
the wishlist and can add and change things.

[Discussion of timing]
In the first hour I will give definitions, examples, and vocabulary, and in the

second hour we’ll do computations. Many many very important things will be said
in the next week.

Category theory is a language, a theory that helps you to write down mathe-
matics. It’s like set theory. You don’t do it for its own sake but rather do it to
help you do mathematics. To define categories and work with them we will use the
language of sets, and I’ll start with some fun about set theory.

When you start with set theory, you talk about sets and it’s great and then you
try to take the set of all sets and it’s not so great. So when you take the “set” of all
sets, this is a “class.” Classes are much bigger and that means you can’t do quite
the same operations on them.

What happens if I want to talk about the collection of all classes. You could
could call this a “superclass,” it’s not inside the theory of sets. What can I can do
with this? I don’t know. What if I take a collection of collections? I can’t really
do anything here anyway. So we haven’t really solved the problem. There’s some
boundary, but I want to be able to consider big objects. There’s a nice solution to
this, called Grothendieck universes.

Definition 1.1. A universe is a set U with some properties:

● if x is in U then the power set P (x) is in U.
● if x is in y and y is in U then x is in U (transitivity)
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2 GABRIEL C. DRUMMOND-COLE

● if {xi}i∈I have I ∈ U and xi ∈ U then ⋃xi ∈ U.
● the natural numbers are in the universe. Let me say instead that I want

the empty set and one infinite set.

These properties tell you that all the operations of set theory work in U. You
don’t need to go elsewhere because all you do uses these sets.

The empty set is one example. The second one is natural numbers, where each
natural number is the union of the numbers before. You never go outside of this
universe. But these don’t match the final axiom. Already when we said the natural
numbers we use the axiom of set theory that there is an infinite set. In fact, if you
just take the ZF axioms and the axiom of choice, you cannot prove that there is a
universe bigger than N, you don’t know. So I should add an axiom that for every
set X there exists a universe U with X ∈ U. This is a harmless axiom. You can put
it next to ZF and it will still be mathematics, but it will be helpful.

Something about universes, they are sets, so they have a cardinal, the cardinal
of a universe, because of the stability under these operations, you get that they
are strongly inaccessible. If K < card(U) then 2K < card(U). The existence of
universes is equivalent to the existence of strongly inaccessible cardinals. This is
completely harmless and transparent in the rest of your life in mathematics.

Now there’s a bonus. Since N is a set, there is a universe U containing N. But
then there is a universe V containing U. Then the set of all ‘sets’ lives in U. If I
want the set of all things like this, I move to W. Every time I do something illegal
in set theory I just jump up a level of universes.

With this said, I will stop set fun and start categorical fun. I’ll give the definition
of a category and then some examples. At some point we’ll take a break before
computations.

Definition 1.2. A category C is a set of objects ObC (I have a universe and a
“set” is inside my universe). For x and y in ObC I have a new object Hom(x, y),

the arrows or homomorphisms from x to y, and I’ll picture these like x
f
Ð→ y. I have

a special arrow for x ∈ ObC, I have a special arrow Idx ∈ Hom(x,x), which goes

x
Id
Ð→ x, a special arrow. When I have arrows that I think of as functions, if I have

x
f
Ð→ y

g
Ð→ z I get an arrow g ○ f ∈Hom(x, z). I want

● Id ○f = f and f ○ Id = f .
● For three composable arrows I want (f ○ g) ○ h = f ○ (g ○ h).

Next I have to to give an example. Instead I will give the example, the category
of sets. I’ll call it U− Set, and for this I need the set of objects. The objects of my
category will be U. If I have two sets x and y in U, I need to know HomU−Set(x, y),
this will be the set of functions from x to y. I have to give my identity element,
which will be the identity function, and I have to give composition, and that’s
composition of functions.

We don’t want to speak about universes all the time so I will talk about Set
instead of U − Set. This is the most basic example, you’ll have more complicated
categories, and a lot of the time they will be built like this because they will have
underlying sets.

I’ll give some basic examples and classical notation for them. We’re going to see.
There’s a category called Ab which is the category of Abelian groups. The objects

of Ab are the Abelian groups, but I cannot take “all” Abelian groups, that’s too
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big, so I want the underlying set to be in U. If I have two Abelian groups A and
B, then HomAb(A,B) is the linear (additive) functions from A to B. I should be
sure that composition of additive functions is an additive function and so on. No
problem, so this is a category.

There’s a category Rings of rings, whose objects are rings such that the under-
lying set is in U. Then HomRings(R,S) is the set of ring homomorphisms from R
to S.

So these are natural. Most concepts in mathematics can be described in this
language. Let me give a category Ban of Banach spaces, so the objects are Banach
spaces whose underlying sets are in U. Then HomBan(V,W ) are the continuous
linear functions from V to W .

I could also take a category Ban≤1, which has the same objects, Banach spaces,
but different arrows. Here HomBan≤1(V,W ) is the set of continuous linear maps
f ∶ V →W such that ∣∣f ∣∣ ≤ 1. If you compose two contracting morphisms you still
get a contracting morphism, and the identity is a contracting morphism.

Let me give two other well-known categories. VectR is the category of real vector
spaces, here the objects are vector spaces with underlying set in U. I’ll end the list of
known categories by Top, again the objects are topological spaces with underlying
set in U. The topology will then be inside U. There is no problem here. The
functions will be continuous functions.

Immediately from the definition is a principle that allows you to build twice as
many categories, the duality principle. In categories, there is a difference between
left and right, and what I can do is build a category by swapping the arrows.
Let C be a category. Let Cop be the category with the same objects and the
arrows reversed, for x, y ∈ ObC I want HomCop(x, y) = HomC(y, x). So let’s give an
example. So say you have a category with only the following arrows

0 1id0 id1

and you take the opposite category you get

0 1id0 id1

If you take Ringsop you get a useful and well-known category, the category of affine
schemes. Taking the opposite category is useful because of things that depend on
the side of the arrow. So if you have property P on Cop, that means you have
“co”-P on C. If you change the direction of the arrow, things are swapped.

Since Descartes, we have tried to embed geometry in algebra, and here we see
the principle that “geometry” is “algebra”op. I know how to do this computation
on my algebra and I hope it will give me what I want on my geometry.

Now I’ll give a definition specific to category theory. If I have two arrows

x y
f

g

whose compositions are equal to the identity, g ○ f = Id and f ○ g = Id, then we call
f an isomorphism and say that x ≅ y, and I want to give a table of differences of
how you think in set and in category theory.

Sets Categories
set object
∈ x→ y
= ≅
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You never want to talk about elements in category theory, you want to describe
things in terms of arrows. It’s forbidden. Equality is awkward, I’ll say isomorphic
or equivalent. There are plenty of examples but probably it’s good to take a break
right now. I’ll see you in five minutes.

Definition 1.3. D is a subcategory of C if Ob(D) ⊂ Ob(C) and HomD(x, y) ⊂

HomC(x, y) and identities and compositions are compatible with the inclusion.

Examples include Ban≤1 ⊂ Ban, or finite sets inside sets. I could take the objects
of U-sets with surjective morphisms. The identity is surjective and compositions of
surjective morphisms are surjective. I could take torsion Abelian groups.

Definition 1.4. D ⊂ C is full if for x, y ∈ ObD, we have HomD(x, y) = HomC(x, y).
I will say D ⊂ C is wide if Ob(D) = Ob(C).

So the Banach and surjection examples are wide and the finite set and torsion
examples are full.

Definition 1.5. A category is a groupoid if every morphism is an isomorphism.

Take G a group, then we can build a category BG with one object and then
HomBG(∗,∗) = G. It’s a point with G-many arrows, with composition given by
composition in the group. Because it’s a group you always can invert arrows.

If you have an action of G on X, then you can build a category a bit like G, where
the objects of the category are the elements of X and Hom(x, y) = {g ∈ G ∶ y = g.x}.
An arrow means there is an action of an element of G that goes from x to y. I can
always go back since G is a group.

If C is a category, we have the interior groupoid of C, the objects are the objects
of C, and the morphisms are the isomorphisms of C.

Now I want to spend the last forty-five minutes making computations of one of
the major things in category theory, called limits and colimits. This is a key big
thing in category theory.

So far I don’t have a lot of things in the structure. I have objects and arrows.
Maybe I have something like this:

∗ ∗

∗

In a category you have a notion of approximation of a diagram by a single object
of your category, and you have a problem of what it means to approximate. Close
means arrows, and arrows have a side. I can approximate on the left or on the
right.

If I have an approximation on the left, I call this the limit and denote it lim←ÐD
and on the right I call it the colimit and write limÐ→D. Let me simplify my diagram.

I want an arrow from my limit A to every element of my category and I want the
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compositions to be commutative:

∗

A ∗

∗

I will say I have a limit if I have a universal thing like this. If A is my limit, it’s
closer to my diagram than any other one. If I have another approximation B then
I should get an arrow B → A which is unique.

For colimits it’s the same picture. An approximation on the right is something
like this Z:

∗

∗ Z

∗

The “best” approximation is one Z so that whenever you have an approximation
on the right, W , you get a map Z →W , unique.

This is called the colimit because it’s on the right. If I swap directions, in the
opposite category limits become colimits and vice versa.

Let X be an object of C. The best approximation on both the left and right is

X, lim←ÐD = X and limÐ→D = X. What if D is a single arrow, X
f
Ð→ Y . To make an

approximation on the left, Z, I need a map ϕ ∶ Z →X and a map ψ ∶ Z → Y . Then
ψ = f ○ϕ by compatibility. I want an approximation by only one object, and now I

want just a map Z
ϕ
Ð→X, and so my limit is X. So lim←ÐD =X.

What about my approximation on the right? This will be an object Z, with
maps ψ ∶ X → Z and ϕ ∶ Y → Z. Compatibility says that ψ = ϕ ○ f so ψ is useless.
Then I want an approximation by one object and Y looks like a good candidate.
So the colimit is Y .

When you have an arrow X → Y then the approximation on the left is X and
on the right is Y .

If I have two arrows X
f
Ð→ Y

g
Ð→ Z, what are the best approximations on the left

and on the right? On the left it’s X with the identity map because the maps from
the limit to Y and Z are useless. On the right it’s Z with the identity.

What about the empty diagram? Can you have a best approximation on the
left and on the right? On the left it’s called a final object ∗, every object in the
category has a morphism to this object, a unique one, to ∗. An initial object is a
final object in the opposite category. An initial object is one, notated ∅, an object
so that Hom(∅, c) is always of cardinality one.

In the category of sets, the empty set is initial, there is a unique map from the
empty set to any set, and a set with only one element is final. In the category of
Abelian groups, the Abelian group 0 is initial, and it’s also final because you always
have a map from any Abelian group to 0.
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I want to give you more types of diagrams now. What about two objects and
no arrows. What is the limit or colimit if you have just two objects A and B. You
have some approximation Z, maybe, with arrows f ∶ Z → A and g ∶ Z → B. If this
exists we call it A ×B. In sets this is the product.

So for the colimit, you need two maps, one from A →W and one from B →W .
In sets it’s called A ⊔B, what about in Ab, there you have A⊕B. In the category
Ab, the coproduct of A and B is A ⊕B also. Then you can get the product and
the coproduct are the same.

Now I want to give you the definition of the coproduct in rings, but maybe, I
have two ring maps from R and S to W , then I want this to be R ⊔ S → W , and
the answer is R⊗Z S, this is ring theory. How do you build this map? You take the
product of the two things. You take R ⊗Z S →W ⊗Z W →W . In rings this is the
tensor product, while for Abelian groups it’s sum and for sets it’s disjoint union. So
these things behave in the same way. If you can prove something abstractly about
coproducts then it will apply in all these contexts at once, so tensor products of
rings is like disjoint unions of sets is like sum of Abelian groups.

Another type of small diagrams,

X Y
f
g

So what is the limit, if it exists? I get Z
ϕ
Ð→X and Z

ψ
Ð→ with two conditions ψ = f ○ϕ

and ψ = g○ϕ. So I have just the data ϕ and the condition f ○ϕ = g○ϕ. I’ll say that I
factorize through the equalizer Eq(f, g) if this is in sets, that’s {x ∈X,f(x) = g(x)}
and then that includes in X. Any time you have an arrow like this and compose
you get this condition. And any time you have an approximation it lands inside
this subset.

What about for colimits? I want an approximation W with maps ϕ ∶ Y → W
and ψ ∶ X → W . The conditions are ϕ ○ f = ψ and ϕ ○ g = ψ. So ψ is useless and
we just need ϕ ○ f = ϕ ○ g. Sometimes there is a colimit, and here in set theory
the colimit is called the coequalizer, this is the equalizer in the opposite category.
Can you guess what is the coequalizer? It’s going to be a quotient, it will be Y / ∼,
the equivalence relation generated by y ∼ z if there exists x ∈ X with f(x) = y and
g(x) = z. We know how to compute this.

Let me give this in a context that is much more visible. Let A and B be Abelian
groups, and take the two maps 0 and g:

A B
0g

and then the limit or equalizer is the kernel of g and the colimit or coequalizer is
the cokernel of g.

Now I want to go to fiber products. A fiber product is a different kind of diagram,
you have

X

Y Z

The colimit of this is Z with the identity map, this is not very interesting. In the
other direction it will be the fiber product X ×Z Y , which may or may not exist. In
sets it will exist, and there it will be pairs {(x, y) ∶ f(x) = g(y)}. You can check
that this is the correct limit in the category of sets.
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Another tye of diagram, I swap the arrows and get

Z X

Y

If this diagram has a limit it’s called a pushout and is written X ⊔Z Y , and may
not exist. In sets it exists, and is modeled by X ⊔ Y / ∼ where x ∼ y if there is z in
Z with x = f(z) and y = g(z).

In rings, the pushout is the tensor product

A B

C B ⊗A C

So far I have written down limits and colimits for finite diagrams but we have
them for infinite diagrams. The simplest ones will have uninteresting compositions.
Consider X0 ⊂ X1 ⊂ X2 ⊂ ⋯, say I have an infinite tower of sets like this. What
is the limit of this diagram? It’s X0. The colimit will be the union of these. It
receives every one and anything that receives every one accepts a map from the
union. OWhat if I have ⋅ ⊂ ⋯ ⊂ X1 ⊂ X0. The colimit is X0 and the colimit is the
intersection.

These are filtered, a filtered poset is one where you can always compare two
elements with the help of a third element, for any x and y there is z with arrows
x→ z and y → z. Field extensions of Q are something like that, you can add

√
2 or

i or both. You can extend from either of the smaller ones to the big one. Filtered
diagrams are good.

What is good about filtered posets is that it is easy to compute their colimits

in sets. If I have a filtered poset with at most one arrow xi
fij
Ð→ xj . The formula

for the colimit is that you take the disjoint union of the Xi modulo the equivalence
relation that xi ∈Xi and xj ∈Xj are equivalent if there exists k and fik and fjk so
that fik(xi) = fjk(xj).

I have to give a basic idea for constructing any limit or colimit. Let me give a
definition.

Definition 1.6. A category C is complete if it has all limits. This means that every
time I give you a diagram you can find the limit. I mean a diagram of a reasonable
size, relative to the universe U. I’ll say it’s cocomplete if it has all colimits.

Theorem 1.1. U − Set is complete and cocomplete.

There are several different recipes. One is to compute infinite products and
equalizers. This is a way to compute limits. In the other direction you need infinite
coproducts and coequalizers. On the other hand if you have pushouts and filtered
colimits you can define all colimits, a different recipe.

2. March 21: Gabriel Drummond-Cole (Functors and adjunctions)

I do not take notes on my own talks.
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3. March 21: Chang-Yeon Chough (Adjoint functor theorem)

(1) statement of the theorem
(2) adjoint functors preserve limits /colimits
(3) accessible categories
(4) presentable categories
(5) compact objects and Freyd’s theorem

Adjoint functors are everywhere. If you pick up a book you’ll see adjoint functors.
These are useful in your real life. I’ll give you some criterion for when you can find
adjoint functors. My game plan, let me say one more thing, I’ll say everything in
terms of 1-categories, but if you replace every category with ∞-categories and sets
with spaces, some model of spaces, then everything will be the same except on a
set of measure zero.

I’ll state the theorem without any explanation.

Theorem 3.1 (Adjoint functor theorem). Let F ∶ C → D be a functor between
presentable categories (I’ll explain this later).

(1) F admits a right adjoint if and only if F preserves all colimits
(2) F admits a left adjoint if F is accessible and preserves all limits

Let me give you a quick application. Gabriel talked about the free group functor.
You can construct a free Abelian group on a set, but you can think of the existence
of the functor as a consequence of this theorem. The forgetful functor will preserve
all limits, and then by the adjoint functor theorem it will admit a left adjoint. If a
left adjoint exists, it’s essentially unique by the Yoneda lemma. Theoretically, you
have a free Abelian functor. Concretely if you’d like to construct the free Abelian
group, you can write down a formula. That concrete description is never useful.
The definition in your first year as a grad student, the construction is, you have a
word, juxtaposition, blah blah blah, you only ever use the universal property of a
free group, you never use the construction.

If you’re an algebraic geometer, given a Grothendieck topology you can describe
a sheaf, and there’s a forgetful functor from sheaves to presheaves, that satisfies
this theorem and admits a left adjoint called sheafification.

That was the statement of the theorem. Second, this is one of the most important
consequences of having adjoint functors. As always, one direction of this theorem
is immediate, which is that if F admits a right adjoint, it will preserve all colimits,
and if F admits a left adjoint, it will preserve all limits.

Proposition 3.1. Let L ∶ C ⇄ D ∶ R be an adjunction. There are many different
notations for adjunctions, this one means that L is left adjoint to R and L goes
from C to D and R goes from D to C. Then L preserves all colimits which exist in
C and R preserves all limits that exist in D.

The proof, what does this mean, you have a family of objects indexed by some
category (ci), with morphisms and compatibilities and so on, so a functor p from I
to C, I assume nothing on the index category. Then we can talk about the colimit
of p, and that’s an object in C. I can apply L and get an object in D. So when I
say that L preserves colimits, I can instead take L to my diagram and then have
a diagram in D and I can talk about the colimit of L ○ p. So we’re comparing
L(colim ci) and colim(Lci). You have a map from the latter to the former and
I claim this is an isomorphism in D. I’ll give a formal proof that I like, if you
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don’t like this argument, close your eyes for thirty seconds. I’ll implicitly use the
Yoneda lemma. To say that these are isomorphic, it’s enough to show that maps
into an arbitrary guy d are isomorphic. Choose any object D and think about
HomD(L(colim ci),D) and by adjunction

HomD(L(colim ci),D) ≅ HomC(colim ci,RD)

which is the same thing as lim HomC(ci,RD). Apply adjunction again, by natural-
ity this is

lim HomC(ci,RD) ≅ lim HomD(Lci,D).

and then what happens, this is by the universal property of colimits, isomorphic to
HomD(colimLci,D). This is true for every D and so this means they are isomor-
phic.

What does it mean to have colimLci? You have a map L(ci) → L(cj), all
compatible with the colimit. If you have any object compatible with the maps on
the top, there could be many morphisms, then you get a filler.

L(ci) //

��

%%

L(cj)

yy

��

colimL(ci)

��
D

now you forget the middle thing and think about adjunction. That amounts by
adjunction, the outer guy, to exactly this data:

ci //

��

##

cj

{{

��

colim ci

��
RD

and when you apply the adjunction to this the middle guy is L(colim ci) which has
the unique lift. So then you have the same thing, they satisfy the same universal
property. That’s the easiest proof, not rigorous. For example, one application,
with forgetful functors, let’s say from vector spaces, R-modules, to sets. That guy
satisfies this condition so it admits a left adjoint and is a right adjoint. Think
about the Hom tensor adjunction, if you think about the Hom functor that admits
a left adjoint, which is the tensor product of modules. That tensor product is a
left adjoint, and therefore it preserves all colimits. If you go back to first year grad
studies, when you study commutative algebra, if you take direct limit or colimit of
Mi and tensor with N , that’s the colimit of (Mi ⊗N). You do this by hand for
direct limits, but this is a formal property now because tensoring with N is a left
adjoint.
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Let me skip accessibility. An accessible category, this arises naturally in mathe-
matics. Sets, Abelian groups, modules, are accessible, there are examples of inter-
est. In real life, like for Abelian groups, you may face set theoretical issues. Then
accessiblity allows you to avoid set theoretical difficulties.

Let me give you an idea for how this goes, I want to assume I preserve all colimits
and show that F admits a right adjoint, so that HomD(Fc, d) ≅ HomC(c,Gd) for
some G. Having a right adjoint means I want to have such an object, if F admits
this adjoint, I should have an object Gd satisfying this condition. So at this point
we don’t know, but we want to fill in the blank and define Gd. What does that
mean, that means, consider a functor H ∶ Cop → Set which assigns for each c ∈ C, the
set HomD(Fc, d). If this functor is representable by a certain object, by something
in D. I’ll focus now on representability of this guy. Then what else can you do?
Think about C̃ which is a category with objects pairs (c, η) where η ∈ Hom(Fc, d).

If you have this new category C̃ and you have (c, η), you can map this to C by
forgetting η, to make this representable, if this functor were representable, then
you’d want to take the colimit of this diagram. You have a diagram in C indexed
by C̃ and you’d take the colimit of this guy. If you go back and forth between these
two constructions, you get the representing object. If you are an algebraic geometer,
you see something like this as a prestack and stack. So being representable will mean
having a colimit of this diagram. But there’s a set theoretical issue because C̃ is
very big. So presentability/accessibility is a set theoretic thing that lets this colimit
exist. Accessibility says that C has a small subcategory C0, and instead of taking
the colimit of C̃ → C we take the colimit over the pullback C0 ×C C̃ which will be
small. This is not the end of the world, we have to compare the two needed colimits,
and that corresponds to adding the additional condition that turns accessible into
presentable. I won’t define what an accesible category is, but it is in some sense
small because it is controlled by a small category having certain properties. The
colimit, accessibility tells you, is large enough, even though it’s small.

Any set is a filtered colimit of finite sets, any Abelian group is a filtered colimit
of finitely presented Abelian groups, but topological spaces are not accessible.

In five minutes, let me say that accessibility saves your life because it lets you
compare colimits. A nice theorem is:

Theorem 3.2. Let C be a presentable category. Then a functor F ∶ Cop → Set is
representable (this is what we want to get right adjoints) if and only if F preserves
all small limits.

So if you follow the theorem, you only need to check that this functor preserves
small limits. This lets you construct an adjoint. The accessibility condition lets
you avoid the set theoretical issues, and the construction is completed by the pre-
sentability assumption. This is not Freyd’s original version. He proved the general
and special adjoint functor theorems, in your real life this is going to be the useful
one, your categories will be presentable so you will just be able to check these and
not something more complicated.

4. March 28: Seongjin Choi: Motivation

[Seminar dinner leaves at 6:10.]
Thank you for coming today. I will talk about loclization of categories with

respect to S. The situation is as follows. Let C be a category and S a subset of the
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morphisms. Then what we want is a “localization category functor” C → S−1C such
that for any category D and functor F ∶ C → D such that F (s) is an isomorphism
for s ∈ S, there is a unique functor S−1C → D so that the diagram commutes.

The claim is that there exists such a functor unique up to isomorphism. Unique-
ness is not hard so I’ll focus on existence. Before constructing the localization
category, I’ll define notation.

Definition 4.1. A quiver is a quadruple (E,V, s, t) where E is a set of edges, V
is a set of vertices, and s and t are source and target maps from E to V .

A morphism between Q = (E,V, s, t) and Q′ = (E′, V ′, s′, t′) is a pair f = (fe, fv)
where fe is a map E → E′ and fv a map V → V ′ such that the diagrams commute

E
fe //

s

��

E′

s′

��

E
fe //

t

��

E′

t′

��
V

fv

// V ′ V
fv

// V ′

We can think of this, roughly, as a category without identities morphisms or
a composition structure. I’ll denote Cat as the category of all categories, using
Grothendieck universes, and there is a forgetful functor from Cat to Quiv.

There is a functor in the other direction called the free or path functor.

Definition 4.2. Let Q = (E,V, s, t) be a quiver. Then I define the PaQ, the path
category of Q to have objects V and morphisms between a and b finite paths of
directed edges in Q, that is, (an = b, fn, . . . , a1, f1, a0 = a) with s(fi) = ai−1 and
t(fi) = ai. The composition is concatenation; the identity is the path (a), so

(an, fn, . . . , f1, a0) ○ (bm, gm, . . . , b1, g1, b0)

= (an, fn, . . . , f1, a0 = bm, gm, . . . , b1, g1, b0)

when a0 = bm.

So given the quiver Q I define PaQ as described, so using this path category I
will describe the localization category.

Define a quiver Q = (E,V, s, t) as follows. We are given C and the set S. Using
C, the vertices are the objects of C. The edges are HomC ∐S (call the inclusions i1
and i2) and so s ○ i1 = sC and t ○ i1 = tC whereas s ○ i2 = tC and t ○ i2 = sC . We want
to define S−1C as PaQ/ ∼, where I’ll explain the equivalence relation ∼, the objects
are the objects of PaQ and the morphisms are equivalence classes where we have

● i1(v) ○ i1(u) ∼ i1(v ○ u) when v ○ u is defined,
● i1(idCa) = IdPaQ(a)
● i2σ ○ i1σ = IdPaQ(sC(σ))
● i1σ ○ i2σ = IdPaQ(tC(σ))

So for example, let C be the category ●
f
Ð→ ● with two objects and one arrow f and

S = {f}. Then first I construct a quiver

a b
i1f

i2f

Next I construct PaQ modulo the equivalence relations. Then I get only one
morphism from a to b and likewise from b to a.
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Let me introduce some examples. We want to construct a localization category
adding some invertible morphisms.

● For S a set of isomorphisms, then we have S−1C = C and ` = idC .
● For S = HomC, then S−1C is the groupoid completion of C.
● For A an Abelian category (where the morphisms between two objects are

an Abelian group and composition is bilinear, you have finite direct sums
and products, and every morphism has a kernel and cokernel, and the
natural map coker ker f → ker coker is an isomorphism), such as modules
over R, but not Set. Given an Abelian category, define C(A) as the category
of complexes in A, that is, sets {Xn, d

n} for n ∈ Z with dn ∶Xn →Xn+1 and
Xn ∈ Ob(A) with dn+1 ○ dn = 0, with morphisms between two complexes a
map from Xn to Y n for each n commuting with dn and dn+1. Then you
can define a functor Hn ∶ C(A)→ A by {Xn, dn}→ kerdn/Idn+1. Define S
as the set of morphisms in C(A) which become isomorphisms under these
functors for all n. These are called quasi-isomorphisms. Then I’ll call the
localization category at S the derived category of A.

5. March 28: Morimishi Kawasaki: Motivation

So I’ll talk about bad behavior of the localization. We want to claim that the
derived category is not an Abelian category. C(R), the category of chain complexes
of R-modules is an Abelian category, but D(Z) is not an Abelian category. We
should say that D(Z) has some good structure, it’s an additive category.

Definition 5.1. C is an additive category if it satisfies the same conditions as an
Abelian category except the existence of kernel and cokernels. It satisfies additivity,
so that morphisms are Abelian groups and composition is bilinear, it has a zero
object, and existence of finite direct sums (and products).

Definition 5.2. Suppose that for any X and Y in the objects of C, HomC(X,Y ) is
an Abelian group. Then there is a zero map and we call Z a zero object if 0ZZ = idZ .

Proposition 5.1. D(R) is an additive category.

Definition 5.3. Let S ⊂ HomC , then S is a multiplicative system if for all X in
ObC,

(1) idX is in S and
(2) S is closed under composition,
(3) and for any f in HomC(X,Y ) and any morphism in S from Y ′ to Y , then

there exists a morphism g in HomC(X ′, Y ′) and a t in HomC(X ′,X) such
that the diagram commutes

X ′ g //

t

��

Y ′

��
X

f
// Y

and similarly for any g and t there exists f and s
(4) and for any f and g in HomC(X,Y )¡ there exists s ∈ S such that s○f = s○g

if and only if ther exists t in S such that f ○ t = g ○ t.

Proposition 5.2. the set of quasi-isomorphisms is a multiplicative system.



DERIVED SEMINAR 13

I won’t prove this statement.

Lemma 5.1. Let C be an additive category and S a multiplicative system. Then
the localization is also an Abelian category.

Then Proposition 5.2 and Lemma 5.1 directly prove Proposition 5.2.
I’ll sketch a proof of the lemma, only explaining what is the Abelian structure

of Homs−1C(X,Y ). By definition of the localization, you can write a morphism as

f ○ s−1 and another as g ○ t−1. Fix f̂ and ĝ in HomS−1C(X,Y ), then represent these

by [(f, s)] and [(g, t)] and s and t are in S and f and g in HomC . Then define f̂ + ĝ
as [(f ○h+ g ○h′, u)] where u will be in S and h and h′ are in HomC . By definition
of the multiplicative system, write

X̃
h′ //

��

hX1

��
X2

// X

So now I want to argue that the derived category is not Abelian. First, recall that
[Z/2,Z/2[1]] ≅ Ext1

(Z/2,Z/2) but these are objects in C(Z). Here Z/2[1] has Z/2
in the −1 position. Then [X,Y ] is HomD(R)(X,Y ). Take P , which is the complex

Z → Z, a projective resolution of Z/2. Then Ext1
(Z/2,Z/2) = {e,0} where e(n) =

[n] (mod ()2). So we see that [Z/2,Z/2[1]] ≠ 0, where this is Z/2 ← P → Z/2[1].
This is an explict representation of ê.

Now we’re ready for the proof. Assume D(Z) is Abelian. Then, we’ll show that
[Z/2,Z/2[1]] = 0. Then this shows that D(Z) is not Abelian. So let us show that
if D(Z) is Abelian then [Z/2,Z/2[1]] is 0.

Take f ∈ [Z/2,Z/2[1]] and assume D(Z) is Abelian. There exists the kernel of
f = (X, ι) with ι ∶ X → Z/2. Since D(Z) is Abelian, 0 → X → Z/2 → Z/2[1] is an
exact sequence in D(Z). Then using the definition of localization, we can write

W
IW

!!

u

}}
Z

IZ

  

t

��

Y

  

IY

s

~~0 X ι
// Z/2

f
// Z/2

where the downward arrows to the right are in HomC(Z), the downward left arrows
are quasi-isomorphisms, and the horizontal arrows are in the derived category.

The third axiom of multiplicative systems gives us this diagram. Then exactness
of 0→X → Z/2→ Z/2[1] implies exactness of the diagram 0→W → Y → Z/2[1] in
C(Z). Then by definition of quasi-isomorphism, there is an isomorphism Hi(W ) ≅

Hi(X) and Hi(Y ) ≅ Hi(Z/2) and so then we get an exact sequence at the level
of homology Hi(X) → Hi(Z/2) → Hi+1(Z/2), so I∗W is surjective. I want to argue
that I∗W is an isomorphism so that ι is an isomorphism in D(Z). Then by exactness,
you’d say that f is zero.

So to prove that X → Z/2 is a quasi-isomorphism, you use the fact that Hn(C)

is [Z,C[n]], and now you have 0 → X → Z/2 → Z/2[1], and you can shift to get
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X[n]→ Z/2[n]→ Z/2[n + 1], and then we’ll have

[Z,0]→ [Z,X[n]]→ [Z,Z/2[n]]→ [Z,Z/2[n + 1]]

which is

0→Hn(X)→Hn(Z/2)→Hn+1(Z/2)

and the last map here is 0 and so Hn(X)→Hn(Z/2) is an isomorphism, so X → Z/2
is a quasi-isomorphism, so f is a zero map, a contradiction.

6. April 4: Yoosik Kim: DG categories

Last time we saw the definition of the derived category of an Abelian category,
first passing to the homotopy category and then inverting the quasi-isomorphisms.
This is not an Abelian category in general, but it’s triangulated, it has a shift functor
and some distinguished triangles to generate long exact sequences in homology.
This triangulated category is not the best structure, so what we’re going to do is
to enhance this category using the notion of dg categories. My mission is to define
dg categories and give some typical examples to get familiar with that.

So let k be a commutative ring, you can think of it as the ring of integers or a
field if you prefer linear algebra.

Definition 6.1. A k-linear category A is called a dg (differential graded) cate-
gory if the morphism spaces are dg k-modules and the compositions and units are
morphisms of dg k-modules.

I probably need to explain some terminology here. Recall that a category A is
said to be k-linear if the morphism spaces are k-modules, that is, HomA(X,Y ) is
a k-module and the composition HomA(Y,Z) ⊗HomA(X,Y ) → HomA(X,Z) is a
k-module homomorphism. A dg k-module V is

(1) V =⊕V p

(2) dV a differential, dV (V p) ⊂ V p+1.

A morphism f ∶ V → W of dg k-modules of degree n has f(V p) ⊂ W p+n and
dW ○ f = (−1)nf ○ dV

The tensor product V ⊗W of graded k-modules has

(1)

(V ⊗W )
p
= ⊕
i+j=p

(V i ⊗W j
)

(2) dV ⊗W = dW ⊗ idW + idV ⊗ dW .

The tensor product of morphisms of graded k-modules, f ∶ V → V ′ and g ∶W →W ′,
this is defined by the Koszul sign rule, (f ⊗ g)(v ⊗w) ∶= (−1)∣g∣∣v∣f(v)⊗ g(w).

So a first example of a dg category is a dg algebra, a graded algebra over k, so
it has a grading, a multiplication, this is a dg category with one object, d ∶ A → A
satisfies the graded Leibniz rule d(a ⋅ a′) = da ⋅ a′ + (−1)∣a∣ada′.

Any dg algebra is a dg category with a single object. Conversely, a dg category
with a single object can be viewed as a dg algebra. Take {∗} as the objects and
HomA(∗,∗) = A, with composition from multiplication.

From this convention, you view this as a dg algebra, and the graded Leibniz rule
crmes from our convention,

d(a ⋅ a′) = µ [(d⊗ idA + idA ⊗ dA)(a⊗ a
′
)] = da ⋅ a′ + (−1)∣a∣a ⋅ da′
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The most important example, let A be a k-linear Abelian category. Then C(A)

the category of chain complexes in A. Then this can be made into a dg category as
follows. The objects and composition are the same as in C(A) and the morphisms
for chain complexes C and D, the gradings are HomCdg(C,D) =⊕pHomCdg(C,D)p

where HomCdg(C,D)p is ∏iHomA(Ci,Di+p).
Now I have to define the differential, so dp takes f i to di+pD ○f i+(−1)p+1f i+1 ○diC .
So if I draw one piece this looks like

Ci
dC //

fi

��

Ci+1

fi+1

��
Di

dD

// Di+1

so that d measures the failure of commutativity of this diagram.
That’s the primary example of a dg category. You can take Z0, objects are the

same as in Cdg(A). The morphisms are the kernel, they’re the kernel of d0. Then
H0(Cdg(A)) has the same objects, and the morphisms are kerd0/imd0, which are
chain maps modulo homotopy.

For a later purpose you want the opposite category, if A is a dg category with
d and ○ then the opposite category Aop consists of the following data, the objects
are the same as in A and the morphisms are opposite; the differential dop(X,Y ) =

d(Y,X) and the composition g ○op f is defined as (−1)∣g∣∣f ∣f ○ g.
Now let me introduce A∞ categories, which is a cousin of a dg category.

Definition 6.2. A (unital) A∞ category A consists of objects, and morphisms
HomA(X,Y ) a Z or Z/2-graded kmodule and it comes with a composition, structure
maps md which goes

HomA(X0,X1)⊗⋯⊗HomA(Xd−1,Xd)→ HomA(X0 ⊗Xd)

which is a multi-k-linear map of degree 2 − d satisfying the relations

∑
k1+k2=k+1

∑(−1)∣x1∣+⋯+∣xi−1∣+i−1mk1(x1, . . . ,mk2(xi, . . . , xi+k−1),⋯, xk) = 0.

How do these start? The first few are

m1
○m1

= 0

and

m1
(m2(x0, x1)) +m

2
(m1

(x0), x1) + (−1)∣x0∣+1m2
(x0,m

1
(x1)) = 0.

Then there is the unit, which is that mk(⋯, ex,⋯,0) is zero, and that

m2
(e, x) = x = (−1)∣x∣m2

(x, e).

Some remarks, in general this is not a category. If mk = 0 for k ≥ 3 this is a dg
category.

Let me finish my talk by saing why these come into play in the ∞ category
setting. We want to measure some A∞ algebra from the algebro-geometric side.

To that purpose, we should enlarge the A∞ category. We have structures in
algebraic geometry, ⊕, [1], ⊗, cone.

So what do we do? We think about the Yoneda embedding.
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7. April 4: Tae-Su Kim: morphisms of DG categories

I’m going to talk about morphisms of dg categories. These are topics in Bertrand
Toën’s lecture notes. I’ll also talk about the homotopy category and about quasi-
equivalences and the homotopy category of dg categories.

I’ll give the definitions and examples and no theorems. So k will be a commuta-
tive unital ring.

Definition 7.1. A morphism of dg categories, or maybe I should call it a dg functor
between dg categories T and T ′ is a functor in the usual sense such that f , the map
between morphism spaces, T (x, y)→ T ′(f(x), f(y)), is required to be a chain map.

Let me give an example. Fix an object x of T and define a functor from
T → Ch(k), the chain complexes of k-modules. On objects it, takes y to T (x, y).
For morphisms it should take T (y, z) → HomCh(k)(T (x, y), T (x, z)) and here the
definition is obvious, it takes α to φα which takes β to β ○ α.

We can check that dα goes to φdα which maps β to β ○ dα. As Yoosik said,
dφα(β) = ±φαdβ ± d(φα)β and these are the same by the compatibility condition
for the differential with composition.

Let me give another example. Let R asd S be k-algebras, unital associative. Let
f be a k-algebra morphisms from R to S.

Then we can define two functors f∗ ∶ C(R)→ C(S) which are (S ⊗R −−) and f∗
from C(S)→ C(R), extension and restriction of scalars.

This might be a digression but let me tell you about the product between two
dg categories, the tensor product. Before doing that let me mention dgCat, which
has objects dg categories and morphisms dg functors. This forms a category.

Now let me take the tensor product of T and T ′, this will be a dg category. The
objects are pairs of objects, one in T and one in T ′. The morphisms HomT⊗T ′(x⊗
x′, y ⊗ y′) is T (x,x′)⊗ T ′(y, y′).

My last example is a functor T ⊗ T op to Ch(k), and the objects (x, y) goes to
HomT (y, x) and HomT⊗T op((x, y), (x′, y′)) goes from Ch(k(T (y, x), T (y′, x′))) and
this takes γ to β ○ γ ○ α.

Let me move onto the second topic, the homotopy category of a dg category. We
can define a linear category [T ] and Yoosik gave a definiiton, the objects are the
same and the morphisms are H0(T (X,Y )). This is the “homotopy category of a dg
category” and this is a functor in the usual sense from dg Cat → Cat which takes
(T → T ′)↦ ([T ]→ [T ′]).

One issue in the homotopy category is composition H0(T (x, y))×H0(T (y, z))→
H0(T (y, z)). [some discussion].

For C a linear category, then the homotopy category [C] concentreted on the
zero level and is isomorphic to C itself.

Our goal is to study localization but to do this we need to specify the subset
of morphisms spaces at which to localize, S ⊂ Hom dg Cat). The answer is quasi-
equivalences?

What is a quasi-equivalence?

Definition 7.2. A quasi-equivalence is a functor T → T” such that

(1) T (x, y)→ T ′(f(x), f(y)) is a quasi-isomorphism
(2) [f] ∶ [T ]→ [T ′] is essentially surjective.

So on the homology level it’s an equivalence of categories.
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Definition 7.3. The homotopy category of dg categories, Ho dg Cat, is the lo-
calization of dg Cat at quasi-equivalences. The homotopy category Ho Cat is the
localization of Cat along equivalences.

As I said, [ ] is from dg Cat to Cat and sends quasi-equivalence to equivalence.
As we, in our talk, last week, we talked about localization, and there’s a universality
property, and by it you have a unique functor Ho dg Cat→ Ho Cat.

Let me give an example you can see in the lecture notes. Consider a dg category
T which satisfies Hi(T (x, y)) = 0 unless i = 0. We claim that T and [T ] are
isomorphic in Ho(dg Cat). There is a “roof” T ′ above both of these. What is T ′?
This is a dg category whose objects are the objects of T . The morphisms from x
to y is

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

Z0T (x, y) i = 0

T i(x, y) i < 0

0 i > 0.

What are the quasi-equivalences? so f1 ∶ T≤0 → T and f2 ∶ T≤0 → [T ]. So f1 is
the identity on objects and inclusion on morphisms. Then f2 is the identity on
objects and projection on morphisms. The maps on morphisms are then quasi-
isomorphisms, so that these are quasi-equivalences. Essential surjectivity is free.

8. April 11: Wanmin Liu: Model categories I

In Chinese philosophy, there are four levels of understanding. The first level is
that we don’t know that we don’t know something. Level three is that we know
that we don’t know something. Before this seminar, I didn’t know the word “model
category.” Maybe after some hard work, we don’t know we know something, this
is level two, and then we know we know something after fully studying it.

So today we want to talk about model category theory, introduced by Quillen
many years ago, in the late 1960s, and this one provides a general setting to study
the homotopy category, construct the basic machinery of homotopy theory. The
motivation for myself is this so-called fundamental result, which I’ll write here.
This is given by:

Theorem 8.1. (Tabuada 2005) Let k be a commutative unital ring. Then the
category of dg categories over k (let’s recall this: the objects are dg categories, and
morphisms are dg functors) admits the structure of a cofibrantly generated model
category where the weak equivalences are quasi-equivalences.

So my goal in this talk is to give the definition of model categories via weak
factorization systems. I’ll also give some very basic properties. In the next hour
we’ll have many examples.

So today I will have many definitions, but they’re not so hard.

8.1. Weak factorization systems (WFS). Fix a category (a small category) C.

Definition 8.1. Let ι ∶ A → X and π ∶ E → B be morphisms. Suppose we have a
commutative diagram

A

ι

��

// E

π

��
X

>>

// B
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and there is a lift from X → E such that the two triangles commute. Then we say
that ι is a left lifting with respect to π and that π is a right lifting with respect to
ι, and denote this ι ⧄ π.

Then we also define the collection, let L and R be two classes of morphisms in
C, we have two classes. We can define L⧄ is the collection of all π such that ι ⧄ π
for all ι in L. Similarly, ⧄R is the collection of all ι such that ι ⧄ π for all π in R.

Definition 8.2. A weak factorization is a pair (L,R), such that

(1) (factorization) any morphism f can be written as a composition ι ⋅π = π ○ ι
for some ι in L and π in R.

(2) (closure) L = ⧄R and L⧄ =R.

Maybe I need one example for you. You can take C to be the category of sets.
Then L could be injective functions and R could be all surjective functions.

A morphism f is a retract of a morphism g if we have the following diagram:

id
))//

f

��
g

��

//

f

��//

id

55 //

Lemma 8.1. L⧄ and ⧄R are closed under taking retracts.

Let’s just prove one of these. suppose π ∶ E → B is in L⊠ and f is a retract of it.
Then since ι is in L and π is in its orthogonal we get a lifting

ι

��

//

f

��

// ))

��
π

��

//

f

��

77

// // 55 //

Let me give a second definition, equivalent.

Definition 8.3. A pair of classes of morphisms (L,R) is a WFS if

(1) for any morphism f there is a factorization f = ι ⋅ π with ι ∈ L and π ∈R.
(2) L ⧄R
(3) L and R are closed under retracts.

Maybe it’s obvious that the other definition implies this one. But how do we see
that R ⊃ L⧄? So let π be in L⧄. Then we can factorize π = i ⋅ p. Then we have

X //

i

��

X

π

��
Y p

//

h

>>

Z

So we can rewrite this as

X
id

++

π

��

i // Y

p

��

h // X

π

��
Z

id

33id // Z
id // Z

and so since p ∈ R and R is closed under retracts, we conclude that π is in R.
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8.2. Model categories.

Definition 8.4. A model cotegory M is a category with

(1) all small limits and colimits exist, Damien talked about these,
(2) equipped with three classes of morphisms, (W,C,F ), called weak equiva-

lences and denoted ∼, cofibrations (denoted ↣), and fibrations (denoted↠)
such that
(a) (two out of three) If f ∶X → Y and g ∶ Y → Z then if two of {f, g, f ○g}

is a weak equivalence, so is the third.
(b) (W ∩C,F ) is a WFS.
(c) (C,W ∩ F ) is a WFS.

What is the meaning of this here? It’s better to give an equivalent definition.

Proposition 8.1. Let M be a category with

(1) M has all small limits and colimits
(2) M has three classes of maps (W,C,F ) so that

(a) W satisfies the two out of three property,
(b) W , C, and F are closed under taking retracts,
(c) Given a diagram

A

ι

��

// E

π

��
X //

>>

B

the dotted arrow exists if ι is in C and π is in F and at least one is in
W .

(d) There exist factorizations of every morphism f into a cofibration fol-
lowed by a fibration ι ⋅ π where either one can be chosen to be acyclic
(in W ).

(From the very beginning, the lifting is not unique.)

8.3. Basic properties. Let (L,R) be a weak factorization system. Then L and
R are closed under composition. To prove this for R, take f and g in R. To show
that f ⋅ g is also in R, it’s just a diagram chase,

A //

h

��

B

f

��
C

g

��
E // D

with h in L. But we have a lift

A //

h
��

C

g

��
E

>>

// D
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and then we have a lift

A //

h
��

B

f

��
E

??

// C

Another lemma is that L is closed under taking pushouts and R is closed under
taking pullbacks. This means that if you have a pushout diagram

W
f //

g

��

X

��

h

Y
i
// Z

if g is in L then h is in L. If this is a a pullback and h is in R then g is in R.
Let me prove this for R. We know that h is in R. We want to show g is R.

We’ll show that it has the left lifting property. We are given a diagram

A

j

��

k // W

g

��
B // Y

with g in L; we want a lift B → W . So we will use the properties of pullbacks.
Because of this diagram, we could draw another diagram

A //

��

W //

��

X

h
��

B

66

// Y // Z

and we have a lift ` from B to X as indicated, which gives us

X

��   
B

p //

>>

  

W

��

Z

Y

>>

by the property of the pushout. We need to see that k = j ⋅ p. If I compose the
diagram with j we get a diagram

X

A

k⋅f
77

k⋅g
''

j // B

>>

  

// W

OO

��
Y

then k is j ⋅ p by uniqueness of the map to the pushout
Let me give the last lemma.
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Lemma 8.2. L is closed under colimits and R is closed under limits.

Proof. Let’s do it for L. Consider the best approximation from the right X0
f0
Ð→

X1
f1
Ð→ ⋯→Xω.

Fix a morphism π ∶ E → B. We want a lifting

X0
//

��

E

π

��
Xω

>>

// B

But this means we want a map Xn → E with compatibilities. In the n = 0 level we
have X0 to E. Then by induction, suppose we have it for Xn. Then because fn is
in L and π in R we have a lift

Xn

fn

��

// E

π

��
Xn+1

==

// B

�

9. April 11: Cheolgyu Lee: Model categories I

So you have seen the definition, so now we will give one hour of just examples.
Let C be a category with objects non-negatively graded chain complexes on

ModR, for R a ring with identity and morphisms chain maps. Then we can define
weak equivalences to be quasi-isomorphisms, cofibrations to be chain maps which
is injective in each degree with projective cokernels. Let fibrations be surjections in
positive degrees. Then we can check that for any 0→M∗, then there is a projective

resolution 0
ι
Ð→ P

π
Ð→ M , a projective resolution. We can easily see that π is in

F ∩W , it’s an acyclic fibration and ι is a cofibration.
Suppose we’re given a chain map N∗ → M∗, then we have a complex N∗ ⊕ P∗,

and a factorization N → N ⊕ P →M . So now we have P sitting inside N ⊕ P and
also P projecting to M . We can define a homotopy category HoC, where we invert
weak equivalences, but this constructs a quiver, arrows in C where the arrows in
W are inverted, this has index set objects in C and we need a bigger universe to
construct it. With the structure of a model category, we can define the homotopy
relation in morphisms in C. Let Ccf be the full subcategory of objects that are both
cofibrant and fibrant.

I need to define fibrant and cofibrant. We call X cofibrant if the unique morphism
from the initial object is a cofibration and fibrant if the unique morphism to the
final object is a fibration. I want to assume the existence of two functors Q and R
which are called cofibrant replacement and fibrant replacement functors. I might
need some version of the axiom of choice to define it. This is a functor from C to
itself so that QX is a cofibrant replacement and RX is a fibrant replacement of X.

I want to explain a first lemma, Ken Brown’s lemma.

Lemma 9.1. Let C be a model category with structure (W,C,F ) and D a category,
not necessarily a model category, with some class of weak equivalences satisfying
the two out of three property.
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Suppose a functor G sends acyclic cofibrations between cofibrant objects to weak
equivalences. Then G sends weak equivalences between cofibrant objects to weak
equivalences.

There is also a dual version that I won’t state.

Proof. Let f ∶ A → B be a cofibration between cofibrant objects. Then I can
factorize A ⊔B → B into a cofibration b followed by an acyclic fibration a. Then
the identity is a weak equivalence. Because A and B are cofibrant, then c1 and c2
are cofibrations, then because pushout preserves cofibrations, then the inclusions
of A and B into A ⊔ B are cofibrations. Then b ○ c′1 and b ○ c′2 are both acyclic
cofibrations. Then F (b ○ c′1) and F (b ○ c′2) are weak equivalences. So F (a) is in W ′

by the two out of three property. Then F (a) ○ F (b ○ c′2) is in W ′; that’s the same
as F (f). �

Let me give a definition. A cylinder object Cyl(X) is an object of C such that

X ⊔X
c∈C
ÐÐ→ Cyl(X)

w∈W
ÐÐÐ→X

where the composition is id ⊔ id and a path object is dual:

Y
w∈W
ÐÐÐ→ Path(Y )

f∈F
ÐÐ→ Y × Y

where the composition is the diagonal id × id.
A left homotopy from f to g is a map H ∶ Cyl(X) → Y satisfying that Hi0 = f

and Hi1 = g where i0 ⊔ i1 is the map from X ⊔X → Cyl(X).

If there is a left homotopy from f to g then we write f
`
∼ g.

If objects are cofibrant and fibrant then left homotopy implies right homotopy
and vice versa. We say that f ∼ g if f is both right and left homotopic to g. We
say that f is a homotopy equivalence if there is a “homotopy inverse” so that both
compositions are homotopic to the respective identities.

From now on I will construct an equivalence relation on the space of morphisms
between two objects. We can check the following

Lemma 9.2. f
`
∼ g implies that h ○ f

`
∼ h ○ g and f

r
g implies that f ○ h

r
∼ g ○ h.

Lemma 9.3. If Y is fibrant then f
`
g implies f ○ h

`
∼ g ○ h. Dually if X is cofibrant

and f
r
∼ g then h ○ f

r
∼ h ○ g.

Let me give a partial proof. So you have X⊔X → Cyl(X)→X and H ∶ Cyl(X)→

Y . We can assume that w is an acyclic fibration because Y is fibrant, you can form
a lift

Cyl(X) //

��

%%

Y

��

Cyl′(X)

;;

yy
X // ∗

Then we can use this to lift.
I didn’t prove that this is an equivalence relation. I didn’t prove transitivity.
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Lemma 9.4. If X is cofibrant then
`
∼ is an equivalence relation.

It suffices to show transitivity. So assume f
`
∼ g and g

`
∼ h. So we have Cyl(X)0 →

Y and Cyl(X)1 → Y . Then we can take a colimit of Cyl(X)0⊔Cyl(X)1 over X with
respect to i′0 and i1. We have a map to X and both maps are weak equivalences.
Since X is cofibrant, the maps i and i′ are cofibrations, in fact acyclic cofibrations
(by an easy diagram chase).

Then i0 and i1 are trivial cofibrations. We can’t deduce that X ⊔X → Z is a
cofibration, but if we factorize this into a cofibration followed by a trivial fibration,
then we get a cylinder obect K, as desired.

So we get a homotopy relation.

Lemma 9.5. Suppose X is cofibrant and Y and Z are fibrant. Then a weak equiv-

alence Y → Z induces a bijection HomC(X,Y )/
`
∼→ HomC(X,Z)/

`
∼

I should also have assumed that the morphism spaces are sets.

Lemma 9.6. If X is cofibrant then f
`
∼ g implies f

r
∼ g.

By these five lemmas we can deduce that

Theorem 9.1. The category Ccf / ∼ exists.

But we didn’t see how we can invert the weak equivalences. I will state it.

Theorem 9.2. A map of Ccf is a weak equivalence if and only if it is a homotopy
equivalence.

So this is how we invert weak equivalences in that category. Actually,

Theorem 9.3. Let δ ∶ C → Ccf / ∼ and Q and R be cofibrant and fibrant replacement
functors. Then δQR satisfies the universal property for the homotopy category
Ho(C).

Let me just give a proof. Let D be a category and F a functor from C to
D sending weak equivalences to isomorphisms. Then there is a “unique” functor
that I will construct G ∶ Ccf / ∼→ D. Then G(δQRX) = F (δQRX) and [f] ∈

HomCcf (δQRX, δQRY ) ≅ HomC(δQRX, δQRY )/ ∼, whith G([f]) = F (f).
We should check athat it’s well-defined. Suppose f ∼ g, then there exists a

cyclinder on δQRX with

δQRX ⊔ δQRX → Cyl(δQRX)→ δQRY

and because δQRX is cofibrant, then i0 and i1 are cofibrations and using the
identity wi0 = idδQRX = wi1, and F (w) is an isomorphism, so F (i0) and F (i1)
have the same image. So F (f) = F (Hi0) = F (Hi1) = F (g). Then we can check
composition. Now I can say that I defined the homotopy category for a model
category.

10. April 18: Damien Lejay: Model Categories II

[Damien told me not to take notes for this talk]



24 GABRIEL C. DRUMMOND-COLE

11. April 18: Mehdi Tavakol: The small object argument

I want to discuss some conditions for getting factorizations for free.
I’ll start by recalling some definitions for small and compact objects. This is

confusing in the literature. Let me first say that I want to define small objects.
They behave like, they have a small amount of information. To say precisely, I
should first say something about a filtered diagram. If I have a partially ordered
set J which is an index set, and I assume it’s filtered, by which I mean that if you
have two objects i and j, there is something bigger than both of them, when you
have an object X in the category, I say it’s small if for any such diagram indexed
by J , say {Yj}j∈J with colimit Y , and I have an induced diagram which passes to
HomC(X,Yj) → Hom(X,Y ), we say X is small if for any such diagram, the map
from the colimit of these hom sets to the hom set into the colimit is a bijection.

This, let me give some examples. If C is a set, you’ll see that it should be a finite
set. If X = N, then you can write it as a union of Nn where Nn = {1, . . . , n}. Then
let Yn = Nn. Then we think about the identity map from N to N. Then we can’t
find a collection of maps from N to Nn for any n that leads to this, I can’t factor
through a finite set. So from this I can say that small objects in sets are finite sets.

You can use the same kind of idea to say that if you want to look at groups,
then small objects are finitely presented groups. Then you can see that by the same
idea, these are going to be small objects.

For algebraic structures you can think of them as objects with some kind of
finiteness conditions. “Compact” is a little confusing because in topological spaces,
compact spaces are not compact objects.

Let me make one remark, I’m ignoring a cardinal condition. You can define
“κ-small objects” for κ a regular cardinal (here κ is ℵ0), and, well, let me do the
example later.

Now I’ll define presentable categories. There are two conditions on the category
C

(1) C admits all U-small colimits
(2) Hom(X,Y ) is U-small
(3) there is a set of ℵ0-small objects which generate C under U-small colimits.

So some examples. For C the category of sets or algebraic things like groups. If C is
the category of Banach spaces, then it’s not ℵ0-presentable, but it’s ℵ1-presentable,
which I’ll leave as an exercise.

Another example that is not ℵ0-presentable but ℵ1, there are some examples in
topological groups, complicated ones. So topological spaces are not presentable.

Let me say a little more about lifting problems. If I have a diagram

A //

p

��

X

q

��
B

>>

// Y

then we say that p has the left lifting property with respect to q and q has the
right lifting property with respect to p. Then for a collection of maps we can talk
about lifting properties. If S is any collection of maps, then ⧄(S⧄) has a stability
condition (we can easily see that this contains S). Let me define another thing, a
weakly saturated class, which is, I have small colimits, and my class of morphisms
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is weakly saturated if it’s closed under pushouts:

A
f //

��

X

��
B

f ′
// Y

where if this is a pushout and f is in S then f ′ is in S. It’s closed under infinite
composition, so if you have

Di

φij

��

C

φi
>>

φj   
Dj

and we have this for Di for i ∈ I, and if D is the colimit of the diagram, then there
is, for any j, there’s a map Dj → D, and I have this map from C → Dj → D, and
this is in S.

It’s also closed under retracts, which means that if you have the following diagram

C //

f

��

C ′

g

��

// C

��
D // D′ // D

where the two horizontal compositions are the identity, and we know that g is in
S, then f is in S.

Now I can state the proposition, the small object argument.
If C is a presentable category and I have a collection A0 of maps φi which is

indexed by U-small I, and if you have f ∶ X → Y , then you can decompose f as
X → Z → Y with f ′ ∶ X → Z where f ′ is in the smallest weakly saturated class of
morphisms generated by A0 and f ′′ has the right lifting property with respect to
all elements in A0.

Let me explain the construction, we want to construct this, I just want to know
the statement, so to do the construction, I look at Ci → Di, and look at all collec-
tions of such maps, with Z0 =X

Ci //

��

X

��
Di

// Y
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and I take the colimit for all guys in A0, and then I get a colimit Z1 which maps
to Y . Then I can do something similar

Ci

��

// Z0

~~
Z1

  
Di

// Y

and I play the same game. Then I take the colimit and get Z, and then it’s easy
to check that this is in the smallest weakly saturated class.

So what is this used for? This weakly saturated class is ⧄(A⧄
0 ).

12. Byung Hee An: Quillen adjunctions and equivalences

First of all it was hard to prepare this talk because I’m very much a beginner at
this category theory. If I say something wrong, then it’s Damien’s fault.

Let me say something about Quillen adjunctions and equivalences. Let’s start
with two categories C and D, we have two functors F ∶ C → D left adjoint to
G ∶ D → C.

Suppose both C and D have model category structures. In other words, C has
three classes of morphisms, weak equivalences and cofibrations and fibrations, and
likewise for D. How can we say that these two model structures are related by
adjoint functors, by these two, right? So, to say about these two model categories,
related to those two adjoint functors, I want to first state one lemma.

Lemma 12.1. (1) Suppose that F preserves cofibrations, that’s equivalent to
G preserving trivial fibrations.

(2) The functor F preserves trivial cofibrations if and only if G preserves fibra-
tions.

Let me give the idea of the proof. This is very easy. Let’s consider f ∶ X → Y
a C-cofibration. What does it mean to say that F preserves cofibrations? That
means that F (f) is in CD.

Consider a diagram like this:

X //

f

��

G(A)

G(g)
��

Y // G(B)

Then using the adjunction we have a diagram like this:

F (X) //

F (f)
��

A

g

��
F (Y ) // B

So if F preserves cofibrations, there is a lift of the second diagram, and then its
adjoint is a lift for the first diagram. So then G(g) is in the right orthogonal of f ,
and so is in the trivial fibrations.
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So among these four conditions, we pick two of these, like preserving cofibrations
and trivial cofibrations. So there are four equivalent conditions.

(1) F (CC) ⊂ CD F (WC ∩CC) ⊂WD
(2) ⋯

(3) ⋯

(4) ⋯

Definition 12.1. We call (F,G) a Quillen adjunction if one of the four equivalent
conditions is satisfied.

This doesn’t literally map a model structure to the other but it maps enough of
the structure of one to the other. So we call in this case F the left Quillen functor
and G the right Quillen functor.

Then if you have a Quillen adjunction, one of the nice properties is that those
functors induce functors at the level of the homotopy category. Before seeing that
I want to mention one remark: a left Quillen functor preserves weak equivalences
between cofibrant objects and a right Quillen functor preserves weak equivalences
between fibrant objects.

This follows from “Ken Brown’s lemma” which Cheolgyu already mentioned. We
know that F preserves trivial cofibrations and then this is exactly the conclusion
that we draw from that lemma.

So now let’s consider a subcategory Cc, the full subcategory whose objects are
cofibrants. Then F preserves cofibrants and this maps to Dc, the full subcategory of
cofibrants. Now we take a localization to take a homotopy category, Dc → Ho(Dc)
but this is the same as Ho(D). Then the composition satisfies a universal property,
that it maps all weak equivalences to isomorphisms, and this is the universal prop-
erty of the homotopy category, so it must factor through the homotopy category
of Cc which is isomorphic to the homotopy category of C. So a left Quillen functor
induces a functor between homotopy categories, this is unique up to unique natural
transformation.

This induced functor we denote by LF . Similarly we can think the induced
functor from G, but instead of considering the cofibrants we think of the fibrants,
we have Df , and since G preserves fibrations this maps to Cf , and then this localizes
to Ho(C), and this takes weak equivalences to isomorphisms so it factors through
Ho(Df) which is Ho(D), called RG.

We can consider Ccf , the full subcategory of cofibrant fibrant objects, which sit
inside Cc and Cf , which sit inside C. These may not be model categories. But these
are categories with weak equivalences. These have a special class of morphisms with
the two out of three condition. Then we can make a homotopy category. Indeed we
have functors among all of these. The key point is that both satisfy the universal
property.

Sometimes these derived functors may be equivalences of categories. There are
several equivalent conditions for those derived functors to be equivalences of cate-
gories.

Lemma 12.2. The following are equivalent:

(1) The left derived functor LF is an equivalence
(2) the right derived functor RG is an equivalence.
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(3) for any cofibrant X in C and fibrant Y in D, then f ∈ HomC(X,G(Y )) is
a weak equivalence if and only if its adjoint in HomD(F (X), Y ) is a weak
equivalence

(4) For any cofibrant X, the composition X → GFX → G(R(FX)) (where R is
a fibrant replacement) and for any fibrant Y , the composition F (Q(GY ))→

FGY → Y is a weak equivalence.

These four conditions are equivalent.
Let me mention a weaker fact about the derived functors. So we have functors

LF ∶ Ho(C)→ Ho(D) and RG ∶ Ho(D)→ Ho(C), and these two functors are adjoint
to one another. The only thing to prove to see this is that F and G preserve some
homotopy relation. That’s basically about preserving cylinders or path objects.
But a cylinder is a factorization X ⊔X → C(X) → X. Anyway, you can do it this
way or also with units and counits.

Let’s go back to the lemma. The first two are equivalent because they are adjoint
to one another. It’s not too hard to prove the equivalences of the other statements,
but it’s not trivial. By the way, if you find a Quillen adjunctions and Quillen
equivalences from google, then you can find a website, the nlab, which says that
these last two are separate conditions that are equivalent, but that’s wrong.

I want to say only one sketch of the proof of only one thing because I think I’m
faster than I expected. I’m going to show one proof. Let’s see that the third and
fourth conditions are equivalent. The equivalence between the second and third
is in higher topos theory but not this one. So consider f ∶ X → GY , here X is
cofibrant and Y is fibrant, then by adjunction there is a corresponding morphism
f ′ ∶ FX → Y . and we apply fibrant replacement and get a morphism f̃ ′ ∶ RFX → Y .
But these two objects are fibrant and so we take a functor G. We get

X //

""

GFX

��

// G(RFX)

yy
GY

So if we assume the fourth statement, then the composition along the top is a weak
equivalence. So by the two out of three condition, oh, suppose f ′ is a weak equiv-
alence. Since fibrant replacement is weak equivalence, so is f̃ ′. Then G preserves
weak equivalence between fibrants so the arrow G(f̃ ′) is as well. Then the compo-
sition is, so f is as well. If we use the other diagram we get the other direction.

Definition 12.2. A pair (F,G) is a Quillen equivalence if one of the conditions of
the lemma is satisfied.

I have these units and counits 1HoC → RG○LF , and being an equivalence means
that this is an isomorphism. Let’s assume that c is cofibrant, then what is LF (c)?
At the object level, the localization does nothing, so LF maps c to Ho(D), then
the image is a cofibrant thing. So then RG does a fibrant replacement and takes
G. So the composition is something like C ↦ F (C) → D → G(D) where D is
fibrant. If we pick any weak equivalence F (C) → D, the natural transformation
defines an isomorphism; then the composition C → G(D) we want to have as a
weak equivalence [missed something].

Let’s see some examples. I need some model structures to show examples. I
won’t go into any detail.
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Let’s consider the category of topological spaces, with objects topological spaces
and morphisms continuous maps. As in chain complexes there are two standard
model structures, the “Quillen” model structure and the “Strøm” model structure.
In the first one, the weak equivalences are weak homotopy equivalences, continuous
maps that induce isomorphisms on all homotopy groups. In the second model,
weak equivalences are homotopy equivalences. These two model structures cannot
be “the same” in some sense. If we localize and see homotopy categories then
these are different. The identity functor from TopQ → TopS , this is not a Quillen
equivalence. This is a Quillen adjunction even though it’s not an equivalence.
Quillen to Strøm is the left adjoint.

The second example is the category of simplicial sets. This has objects functors
from ∆op to the category of sets. This is a “simplicial set” which has some kind
of face and degeneracy maps. Then this has a standard model structure. The
second example is that TopQ and sSet are Quillen equivalent via ∣ ⋅ ∣, the geometric
realization, and the singular functor Sing, maps from the simplex. The important
thing is that this pair is a Quillen equivalence. Their homotopy categories are
equivalent. So if you only want to see homotopy types, in this category, then it’s
enough to consider simplicial sets. Damien said that the benefit of simplicial sets
is that this is a presentable category.

In the Strøm category, cofibrations and fibrations are maps satisfying the ho-
motopy extension and homotopy lifting properties, respectively. For the Quillen
case, it’s Serre fibrations, which satisfy a lifting property only with respect to some
certain kind of maps Dn →Dn × I.

I didn’t remark about cofibrant generation, where you have a small set of generat-
ing cofibrations, and then you can get all cofibrations from transfinite compositions,
pushouts, and retracts. You can do some kind of small object argument and build
some Serre cofibrations here.

A third example is chain complexes. We saw two model structures, but if A
and B are Abelian categories (with enough injectives), then we can make Ch(A)

and Ch(B), the chain complexes on them. Suppose that A and B are adjoint, then
there are induced functors on the chain complexes which are Quillen adjunctions.

The next example, I want to introduce one more model category, the category
sModR, where this is simplicial R-modules. The definition is similar: functors
∆op → ModR. You have special maps, face and degeneracy. So the fourth ex-
ample is the Dold–Kan correspondence. Consider Ch(R) and sModR, and there
are equivalences of categories, N and Γ which I don’t want to define. These are
not only just Quillen equivalences but also equivalences of categories. So, I missed
something. We have Quillen functors from Top to sSet and sModR to Ch(R), and
we also have functors sModR ⇆ sSet. Maybe you remember the forgetful and free
functor between groups and sets. This is a forgetful functor, get rid of the module
structure, and in the other way it’s the free R-module. Then this pair is a Quillen
adjunction.

So I want to write in this way.

TopQ ⇆ sSet⇆ sModR ⇆ Ch(R)

So here we have as composition the singular chain complex on spaces, so you get
homology at the level of homotopy categories.

I want to mention one more thing, this is not an example, say one more thing,
about transfered model structures. So suppose we have adjoint functors F ∶ C ⇆
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D ∶ G, and suppose that C has a model structure. Can we define a model structure
on D using this adjunction? How can we hope to do this? The baby example is
when F and G are equivalences. Then it’s easy to get the model structure over to
the other place. You let the image be the desired class of morphisms. You only
have an adjoint pair. So what we want to do is to define the weak equivalences in
D to be G−1(WC), all morphisms whose image under G is a weak equivalence, and
fibrations all the maps whose preimage are fibrations. When do you get this kind
of model structure? I don’t know a necessary and sufficient condition but I know a
sufficient condition.

Proposition 12.1. Assume that C is cofibrantly generated (I don’t want to define
this). Then (WD, FD) defines a model structure on D if it satisfies two condi-
tions (quite technical, I think. I’ll use stronger but easier conditions than the most
technical ones I know).

(1) G preserves filtered colimits.
(2) D has a fibrant replacement functor and path objects which are functorial

for fibrant objects.

The first condition we all know, you send a filtered colimit to a filtered colimit.
For the second one, we already defined the fibrations. So we don’t know the data
being from a model structure but we can still talk about fibrant replacement.

If we decompose a morphism in that way, we can define a “path object” which
is a factorization of the diagonal A → P (A) → A × A, where the first map is a
weak equivalence and the second a fibration. We should be able to find P (A) in a
consistent way.

The proposition says that if G and D satisfy these conditions then this data
defines a model structure on D.

Let’s see the example of transferred model structure. So for example sModR can
be viewed as being transferred from sSet. So we can look at dg AlgR and Ch(R).
If you forget multiplication you get a chain complex.

I want to use the projective model structure, fibrations are degreewise epimor-
phisms. Then there’s a canonical functor, the forgetful functor, and the other
way is a free functor. More concretely this is the free tensor algebra functor. So
TA =⊕A⊗i. Then the multiplication is tensor product. We don’t know the model
structure on dg algebras, but we have a model structure on ChR and adjoint func-
tors. So we want to define weak equivalences and fibrations as weak equivalences
and fibrations under the forgetful functor. So these are algebra morphisms so that f
is a weak equivalence as chain complexes. It induces an isomorphism on homology.
Then fibrations are degreewise epimorphisms.

The condition of the proposition is that

(1) forget preserves filtered colimits
(2) the category of dg algebras should have fibrant replacement and functorial

path objects for fibrant objects.

The first condition is true, even one hour ago I didn’t know why. Damien let me
know. Our fibrations are degreewise epimorphisms. Any map from a dg algebra
to zero is a fibration. So every element is fibrant and the identity is a fibrant
replacement functor. What about path objects? This is the situation in which the
proposition works. So I want a path object, which is actually quite complicated.
This can actually be defined as A ⊗R Ωpoly(∆

1) if R is characteristic zero. Under
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these certain assumptions, the path object can be written in this form, and then
it’s obvious that this is functorial. So this is the case.

13. June 12: Yong-Geun Oh

What I’m going to talk about is, try to give the proof of existence, of the model
category of dg categories. So let me denote DCAT as the category of differen-
tial graded categories. Somehow I read another paper of Tabuada, he introduces
another category DCATp, which is the category of dg categories with one initial
category, with O, with morphisms of O → C in DCAT.

Theorem 13.1. (Tabuada) There is a model category structure whose weak equiva-
lences W are quasi-equivalences of dg categories. The generating set of cofibrations
is I, I’ll write it down in detail later. J is the generating set of trivial cofibrations.
So (W,J⧄,⧄(I⧄)) describe a model structure in DCATp.

Let me describe a few categories. Let’s consider A a category with one object
called 3, with an identity endomorphism 3→ 3. Then B has two objects 4 and 5 and
each has just the identity morphism, and the morphisms between 4 and 5 are trivial.
Then there is a category K, with two objects 1 and 2, and a more complicated set
of morphisms. It has morphisms f ∶ 1 → 2 and g ∶ 2 → 1 and r12 ∶ 1 → 2. So in this
category Mor(1,2) ≅ Hom0

k(1,2) ≅ k, the ground ring, generated by f . Similarly,
Mor(2,1) ≅ k, spanned by g. These are closed, that is, df = dg = 0. dr1 = gf−1, with
r1 ∈ Hom−1

k (1,1) and r2 ∈ Hom−1
k (2,2), with dr2 = fg−1. Then dr12 = fr1 −r2f . So

what this means is, this is a kind of contraction, f intertwines these two morphisms.
So the morphisms in this category are generated by f , g, r1, r2, and r12.
This will be one slick way of expressing some condition.
So K and then there’s more. So here’s another category P(n), with objects 6

and 7, and the morphism structure has a morphism space Dn from 6 to 7, this is
a complex, so what is Dn? We denote by Sn−1, this is a complex defined by

Sn−1
[i] =

⎧⎪⎪
⎨
⎪⎪⎩

k i = n − 1

0 else

The analog of Dn will have k in degree n − 1 and n, with the differential the
identity. Now let me introduce one more, R(n), which is the category of dg functors
from B to P(n). The objects are the same, but you have, well, R(n) is dg functors
from B to P(n) that send 4 to 6 and 5 to 7.

Here is another, C(n) is the dg category with two objects, 8 and 9, that has
morphisms Sn−1 from 8 to 9 and all other spaces minimal (k or 0 as appropriate).

Now I want to denote again by S(n) the unique dg functor from C(n) to P(n)
the dg functor that takes 8 to 6 and 9 to 7 and takes Sn−1 to itself in Dn

[long discussion about whether the differential goes down or up]
So Q is the dg functor from O to A. Now I’m going to tell you J .
The generating set of trivial cofibrations is the set of dg functors F which is

the functor fro A to K such that 3 goes to 1 and R(n) for n ∈ Z. For I it’s the
dg functor Q and the functors S(n) for n ∈ Z. Then W is the category of quasi-
equivalences. Then the main theorem is that these satisfy the generating criteria
for model categories:

(1) W has the two-out-of three property and is closed under retracts.
(2) The domains of I are small relative to I-cells
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(3) The domains of J are small relative to J-cells
(4) J − cell is contained in W ∩ I − cof
(5) I − inj ⊂W ∩ J − inj
(6) Either W ∩ I − cof ⊂ J − cof or W ∩ J − inj ⊂ I − inj.

You might wonder what the point of these ad hoc categories is. The proof of this
can be reduced to the case of the category of complexes by some categorical non-
sense, interpreting dg functors, natural transformations, and so on, by categorical
nonsense, and then those two theorems, we have two motivating propositions in the
category of complexes.

The model structure in complexes is weak isomorphisms and fibrations are sur-
jections. Well, a map p in Ch(k) is a fibration if and only if pn is surjective for
all n. This can be lifted as a lifting property involving 0 → P(n) and X → Y via
p. So this is exactly the right lifting property with respect to 0 → P(n). A map
p ∶X → Y in chains of k is a trivial fibration if and only if it is J-injective, exactly
the same J . This one I didn’t check but I think this is exactly what this is.

14. June 12: Kyoung-Seog Lee

Thank you for giving me this opportunity to give a talk. What Damien asked
me to do was solve some exercises. Before that, let me briefly tell you what we’re
going to do. We want to give a model category structure on dg categories. We’ll do
it by giving two of the three classes. The weak equivalences are quasi-equivalences.
We’ll define the fibrations, and thes will be f ∶ T → T ′ satisfying two conditions.

(1) fx,y ∶ T (x, y)→ T ′(f(x), f(y)) is surjective in chain complexes, and
(2) for any u′ ∶ x′ → y′ in [T ′], there exists y ∈ [T ] such that f(y) = y′, there

exists an isomorphism u ∶ x→ y in [T ] such that [f](u) = u′

Theorem 14.1. (Tabuada) these classes (W,F ) determine a model category struc-
ture on dg categories.

I want to prove exercise 14, my mission given by Damien, this is fun. This is four
parts.

(1) Let 1 have a single object and the morphisms just k in degree 0. Show that
1 is cofibrant. Recall that A is cofibrant if and only if ∅→ A is cofibration.
This is true if and only if for every map X → Y that is a trivial fibration,
there is a lifting

∅ //

��

X

��
A

>>

// Y

Let us prove this. So we have a commutative diagram, so our object in A
hits something y in Y , since this is a trivial fibration, the map from [X]

to [Y ] is essentially surjective. Then there is an object quasi-isomorphic to
y, and x′ that hits it. By the second property, then there is some x which
hits y. I then just define a dg functor which sends my object to x. You
can just directly check that this works. You have to check that this is a
chain morphism. I can define a map because the differential of the identity
is always zero.



DERIVED SEMINAR 33

(2) Let me introduce another category and show it has another lifting property.
This category ∆1

k is the k-linear category with two objects 0 and 1 and
a morphism. The claim is that this is again cofibrant. This is similar
checking. I didn’t write everything down. Let me check that.

∅ //

��

X

��
∆1
k

// Y

So I have y0 and y1 and I want to lift everything. I again us that X → Y
is a trivial fibration. I can assume that there exists x0 and x1 which map
to each of these, by the same argument, and by fullness I’m surjective on
the homotopy class for this morphism, and this gives a way to define this
map. I should confess that I didn’t check every detail of that.

(3) These are about non-cofibrant objects. He claims that by exercise 7, you
can show that the dual numbers k[ε] is not a cofibrant dg category. Let me
briefly solve this exercise here. Let me explain this exercise. This says that,
let B be a commutative k-dg algebra whose underlying graded k-algebra is
a graded commutative polynomial algebra k[X,Y ] with X degree 0 and Y
degree −1. Let the differential of Y be X2. This is a dg category with one
object. Then the first claim is to show that there exists a natural quasi-
equivalence p from B → k[ε] = k[X]/X2. The second claim is to show that
there is no section in dg categories. Then this gives you that k[ε] is not
cofibrant. Because I can write

∅ //

��

B

p

��
k[ε]

id
// k[ε]

We can show that B → k[ε] is a weak equivalence and the lack of a section
indicates that there is no lift so k[ε] is not cofibrant. So I have k[X,Y ],
and a differential, and in degree 0, I have k[X]. In −1 degree I have k[X]Y ,
and in degree −2 I have Y 2 = 0 as long as 2 is invertible. Then d2(Y ) = 0
so d(X2) = 0 so XdX + dX ⋅ X = 0. Then I have f(X)Y which goes to
f ′(X)dX ⋅ Y + f(X)dY = f(X)X2. So in here the kernel is k[X] and the
image is k[X]X2 so the homology is k[X]/X2. If this is zero then f is
zero in this ring. So I computed the cohomology, and H0(B) = k[X]/X2

and H−1(B) = 0, et cetera. So I can naturally define k[X,Y ] → K[X]/X2

naturally. This is a natural quasi-equivalence. This is an isomorphism in
homology. The first condition is satisfied. It does not admit a section. If p
admits a section, then this is k[X]+k[X]Y , it goes to some (f(X), g(X)Y ),
and it should square to zero, so f(X) = 0. Since it is a section, then it can
never go back to X.

(4) Let me finish by proving exercise 4, again very simple, I hope. There is
a non-cofibrant object and I want to show one more example, T is a dg
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category with four objects, x,x′, y, y′, and

x

u

��

f // x′

u′

��
y

g′
// y′

From x to y′ I have k⟨u′f⟩⊕ k⟨g′u in degree 0. I put in another k⟨h⟩ with
h in degree −1, with boundary u′f − g′u.

There is a category ∆1
k ⊗∆1

k. This has

0⊗ 0 //

��

1⊗ 0

��
0⊗ 1 // 1⊗ 1

with diagonal morphism just k. Again the argument says that there is a
natural fibration T →∆1

k ⊗∆1
k with no section, so then ∆1

k ⊗∆1
k cannot be

cofibrant. There is a natural functor, just take everything to the thing it
looks like, and if I construct a functor between them, the only thing I have to
check is that Hom(x, y′)→ Hom(0⊗0,1⊗1) which takes ⟨u′f⟩⊕⟨g′u⟩⊕⟨h⟩→
k⊗k is a quasi-isomorphism. This takes h to 0 and the other two generators
to 1 ⊗ 1. So this is a chain map. It’s also a quasi-isomorphism. You can
check that this is 0→ k → 0 in both cases. So this is a trivial fibration, and
there is no section, let me claim, that’s the only claim I want to say, this
is, this involves a lift

15. 6/20: Morimichi Kawasaki: on T -dg-modules

Today we consider category of functors and natural transformations. It was a
little confusing so if I make a mistake please point it out. Let T be a dg category.
Then F ∶ T → C(k) is a T -dg module if F is a dg-functor.

Remark 15.1. The category of chain complexes, C(k), has a dg-category structure
Cdg(k) or C(k), so in this derived seminar, this was explained by Yoosik Kim. So

recall this first. We can

In other words, for any object x of T , there is a chain complex Fx, and this
satisfies Fx ⊗T (x, y)→ Fy and this satisfies the usual associativity and unit condi-
tions (these being that for any x and c ∈ Fx that c⊗ 1x → c, where 1x is the unit of
T (x,x)).

The proof of the “in other words” is, take x, y, z in the objects of T and s in
T (x, y) and t in T (y, z). Then by the definition of a dg functor, we have the
following diagram:

T (x, y)⊗ T (y, z) //

��

T (x, z)

��
C(k)(Fx, Fy)⊗C(k)(Fy, Fz) // C(k)(Fx, Fz)

and this implies that F(t○s) = Ft ○Fs, which means that Fx⊗(t○s) = (Fx⊗ t)⊗s.
Here the bilinear map ⊗ is c⊗ s↦ Fs(c).
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Now the unit condition on dg functors, we have

k
ex //

eFx %%

T (x,x)

Fx,x

��
C(k)(Fx, Fx)

and for any k in k, Fx,x(ex(k)) = eFx(k). Since eFx(1x) = 1Fx in C(k)(Fx, Fx),
then c⊗ 1x = c.

We want to consider the category T − mod of dg T -modules. First we, to
consider a category, we have to define morphisms. The set of morphisms between
T -dg modules F and F ′ from T to C(k) is the set of natural transformations
between dg functors. This means we have commutativity of the following diagram:

Fx ⊗ T (x, y) //

��

Fy

��
F ′
x ⊗ T (x, y) // F ′

y

Then T − mod consists of the category of T -dg modules. Now we define a
model structure on T -dg modules. The computation here is simple. For f in
T − mod (F,F ′), we say f is an equivalence if for all x in ob(T ), the component
fx ∶ Fx → F ′

x is an equivalence in C(k) (that is, a quasi-isomorphism).
Second, we define fibrations. A morphism f ∈ Mor(F,F ′) is a fibration if for

all x, fx ∶ Fx → F ′
x is a fibration in C(k). Here fibration means surjection. This

induces the model structure on T − mod . Toën’s pdf did not give a description of
cofibrations, but I think it’s hard to describe.

Today we will not check that this is a model structure.

Definition 15.1. The derived category of T -modules, D(T ) is Ho(T − mod ) ∶=

W −1(T − mod ), the localization with respect to the weak equivalences.

Next we’ll give a definition. I gave only the definition of T -dg modules. Let me
give examples.

(1) The trivial C(k)-dg module from C(k) to itself (the identity) is a trivial
module.

(2) The next examples come from Toën, pages 15 and 16. Let T be a dg
category. Define f ∶= hx ∶ T → C(k) by y ↦ T (x, y), which is an object of
C(k). Moreover, for a morphism a, you get b↦ a ○ b.

(3) For T any dg category, let hx ∶ T
op → C(k), this takes y to T (y, x) and a

morphism a to b↦ (b ○ a).

These three are the three main elementary examples. As an exercise, let T be a dg
category. We’ll prove exercise 2, that x↦ hx defines a functor [T ]↦D(T op).

Proof. First, we construct the functor h ∶ T → T op − mod . If x is an object of T ,
then hx is a T op-module. So this was our example three. For a morphism, fix x
and y in the objects of T op. Then choose a in T op(y, x) = T (x, y). We can define
ha, a map in T op − mod (hx, hy) by the following. For z ∈ ob(T ) we define ha(z),
a map in C(k)(hy(z), hx(z)) by ha(z)(b) = b ○ a for any b ∈ T (y, z). In diagrams I
can write

a↦ (z ↦ ((y
b
Ð→ z)↦ (x

a
Ð→ y

b
Ð→ z))
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Consider the restriction of h to Z0(T (x, y)) ∶ Z0(T (x, y)) → T op − mod (hx, hy).
Recall that H0(T (x, y)) = Z0T (x, y)/B0(T (x, y)). We still have to show the
well-definedness. Assume a, a′ in Z0(T (x, y)), and assume that [a] = [a′] in
H0(T (x, y)), which means that a−a′ ∈ B0(T (x, y)). We have to prove that ha = ha′

in D(T op). Since a−a′ is in B0(T (x, y)), there is an α in T −1(x, y) with a−a′ = dα.
Then for any b in T (y, z), we have

b ○ a − b ○ a′ = b ○ (a − a′) = b ○ dα = d(b ○ α) − db ○ α.

Therefore for all b in T (y, z) with db = 0, we have b ○ a − b ○ a′ ∈ I(d) ⊂ T (x, z).
Therefore ha = d

′
a in D(T op). �

I’ll finish here. Thank you.

16. Youngjin Bae

Let me briefly give you what I want to do in one hour. We are considering the
model categories and dg categories, and we want to consider M a model category
enriched by chain complexes over k, and this is a model category and also has a dg
category structure, and I want to say, if I consider the dg category, I can consider
Int(M), and I can consider the model category, let me say M . I can consider the
homotopy category of the dg-category Ho Int(M). We can also consider the derived
category of this model category W −1M , and I want to compare these. At the last
point I want to define a kind of Yoneda embedding in the case of dg categories.
That’s my brief outline and introduction.

Definition 16.1. Let me recall the C(k)-model category structure. This consists
of the data of:

(1) A C(k)-module structure on M , ⊗ ∶ C(k)⊗M →M satisfying the associa-
tivity and unit conditions, E ⊗ (E′ ⊗X) ≅ (E ⊗E′)⊗X and k⊗X ≅X for
all E and E′ in C(k) and X in M .

(2) For any pair X and Y in my model structure, I have Hom(X,Y ) ∈ C(k) for
all X and Y in M satisfying that Hom(E,Hom(X,Y )) ≅ Hom(E ⊗X,Y )

(3) M already has a model structure so we want a compatibility of the model
and the module structure. i ∶ E → E′ is a cofibratino in C(k) and j ∶ A→ B
is a cofibration in M , then we want

E ⊗B ⊔E⊗A E′
⊗A→ E′

⊗B

to be a cofibration in M

Definition 16.2. Let M be a C(k)-model category and T a dg-category. Then
MT is called the T -dg module with coefficients in M , for objects dg functors from
T to M , which is the same thing on objects as Fx ∈M for x ∈ T . This satisfies the
following compatibility: Fx ⊗ T (x, y)→ Fy with

Fx ⊗ T (x, y)⊗ T (y, z) //

��

Fx ⊗ T (x, z)

��
Fy ⊗ T (y, z) // Fz

and the unit condition Fx ⊗ 1x
∼
Ð→ Fx.
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The morphisms from F → F ′ are collections fx ∶ Fx → F ′
x for x ∈ T with the

compatibility condition

Fx ⊗ T (x, y) //

fx⊗1
��

Fy

fy

��
F ′
x ⊗ T (x, y) // F ′

y

So these are just natural transformations.

Remark 16.1. MT admits a model category structure. I considered some dg
category but it has a model category structure. f is a weak equivalence in MT

if fx is a weak equivalence in M for all x. Also f is a fibration in MT if fx is a
fibration inM . By the lifting property, the cofibrations ofMT are ⧄(WMT ∩FibMT ).
This defines a model category structure (under some conditions, i.e., that M is
cofibrantly generated)

Remark 16.2. MT admits a C(k)-model structure

Some exercise. Let T and T ′ be dg categories and M a C(k)-model category.

Then I want to give an idea of the proof that MT⊗T ′ ≅ (MT )T
′

as C(k)-model
categories.

In order to make this make sense, we need M (T⊗T ′) to be a dg model category.

Proof. We’re going to define a map Φ from M (T⊗T ′) → (MT )T
′

. So on objects,
F ↦ Φ(F ).

So F ∶ T ⊗ T ′ → M is a dg functor, with F(x,x′) such that F(x,x′) ⊗ (T ⊗

T ′)((x,x′), (y, y′))→ F(y,y′) with associative and unit conditions.

We want to define Φ(F ) ∶ T ′ →MT . This Φ(F )x′ for x′ in T ′ with

Φ(F )x′ ⊗ T
′
(x′, y′)→ Φ(F )

′
y

with Φ(F )x′ a functor T → M , which is a dg functor with the following data
(Φ(F )x′)x for x in T , such that there are maps

(Φ(F )x′)x ⊗ T (x, y)→ (Φ(F )x′)y

for x and y in T . The answer is then quite obvious, we choose Φ(F ) satisfying
(Φ(F )x′)x = Fx,x′ in M . You can directly check that using the morphism (T ⊗

T ′)((x,x′), (y, y′)) ≅ T (x, y)⊗ T ′(x′, y′) and this gives your compatibility, you can
cook up the things you need.

The morphisms are also roughly the same.

Φ ∶M (T⊗T ′)
(F,F ′

)→ (MT
)
T ′

(Φ(F ),Φ(F ′
))

and maybe this is boring and I’ll skip it. �

Okay, so now for M a C(k)-model category, we have M a dg-category with
objects the objects of M and morphisms M(x, y) = Hom(x, y) from the C(k)-
enrichment. But we actually want Int(M), which is the full sub-dg-category whose
objects are M cf , the fibrant and cofibrant objects of M , that is, the ones where
∅→X is a cofibration and Y → ∗.

If I consider [IntM], I can also consider Ho(M) ∶= M cf / ∼ and I want to say
something about the ∼ homotopy relation for M cf .
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So I have maps f and g from x to y, and I want a cylinder x ⊔ x
i⊔j
ÐÐ→ C(x)

p
Ð→ x

where i ⊔ j is a cofibration and p is a fibration and p ○ i = p ○ j is the identity on x,
and then we want

x

i
��

f

!!
C(x) h // y

x

j

OO

g

==

This is “left” homotopy

There is also “right” homotopy, using a path object, a factorization of Y
s
Ð→

P (Y )
p×q
ÐÐ→ Y ×Y which factorizes the diagonal into a trivial cofibration followed by

a fibration, and then you want

y

x

f

==

g
!!

h // P (y)

p

OO

q

��
y

So at the object level both [IntM] and M cf / ∼ are the same. The morphisms of
[IntM] are H0(IntM(x, y)) where Int is the same as Hom on our full subcategory
and so we want to show

H0
(Hom) ≅ HomM(x, y)/ ∼

So this was very hard for me, but the fact you use is that

HomM(x, y) ≅ HomM(k ⊗ x, y) ≅ HomC(k)(k,Hom(x, y))

so the right hand side are degree zero chain maps in Hom(x, y). So these are
Z0(Hom(x, y)).

So the left hand side is Z0(Hom(x, y))/B0(Hom(x, y)), and so the only thing we
need to do is to compare the model category homotopy relation with the quotient
by B0(Hom(x, y)).

So on the left we say f − g = dh, and then I have the following, suppose I have a
right homotopy, Hom(x, y)Hom(x,P (y))⇉ Hom(x, y), and I want to say that this
uses f − g = dh′ [Some discussion about how Hom(x,P (y)) ≅ P (Hom(x, y)) and
this can be used to reduce to chain complexes.]

17. June 27: Tae-su Kim

I’m going to talk about the Yoneda embedding, which was part of Youngjin’s
talk last time, but he skipped it. So k will be our ring, a commutative unital ring,
and T a dg category defined over k. Then a T -dg module is nothing but a dg
functor F ∶ T → C(k). What we’re going to do is construct a dg functor from T to
another category which is quasi-fully faithful, and this will be Int(T op − mod ).

Let me construct this functor. I’ll denote a functor h ∶ T → T op − mod which
will give rise to the one I want later. So we have x ↦ hx ∶ T op → C(k). This
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functor hx takes y to T (y, x). Moreover, a morphism α ∶ x → x′ gives a natural
transformation given using the composition map, from hx to hx′ . So for each z this
defines a map T (z, x)→ T (z, x′) and it’s just composition with α.

I want to show that this is a fibrant and cofibrant object in T op − mod to say
that it lands in the interior. To talk about this I need to define the model structure
on T op− mod . If I have F and F ′ objects in T op− mod , then morphisms between
them are natural transformations between functors. This F → F ′ is a fibration if
Fx → Fx′ is a fibration if it’s a fibration in C(k) and similarly for weak equivalences.

This is our model category structure on T op − mod . We can also find an initial
and terminal object, which is a 0 object, which to any object in x assigns the zero
chain complex. My claim is that hx → 0 is a fibration. This is easy to show because
what we have to show is that (hx)y → 0 is a degreewise surjection. But with 0 as
a target it will be surjective, so this is a fibrant object.

The more tricky part is to show that hx is cofibrant. What we have to show is,
we need this kind of diagram

0

��

// F ′

p

��
hx

>>

// F

for F,F ′ objects of T op− mod and p a trivial fibration. So to each object y I need
to assign maps

T (x, y)→ F ′
y → Fy

What do I get for y = x? I can assign idx to something in F ′
x because F ′

x → Fx is
a trivial fibration so a degreewise surjection. Now for α in T (y, x), I want to give
something in F ′

y. But α defines a map F ′
x → F ′

y. Since F is a T op-module, there is
a map φ′α which takes a to φ′α(a). Then my lift will be α ↦ φ′α(a).

This data will define a natural transformation as I desired. Let me check. I
have py ⋅ gy = fy. So py ⋅ gy(α) = py ⋅ φ

′
α(a). By the definition, since p is a natural

transformation, I have

F ′
x

φ′α //

��

F ′
y

��
Fx

φα

// Fy

Then

py ⋅ φ
′
α(a) = φαpx(a) = φα ⋅ fx(idx) = fyφ

h
α(idx) = fy(α).

Here φh is a transformation between fx and fy.
So we have checked that h ∶ T → T op − mod is fibrant and cofibrant in the

category, so instead we can write it as landing in Int(T op− mod ). Our next claim
is that this is a quasi-fully faithful functor between these two dg categories.

What does this mean? It means that the morphism level map

T (x, y)→ Hom(hx, hy)

is a quasi-isomorphism. Let me check this. I’ll directly construct a map ψz for
every z in the objects of T from

Z(T (x, y))/B(T (x, y))→ Z(Hom(T (z, x), T (z, y))/B(Hom(T (z, x), T (z, y))).
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So suppose I have [u] in the domain, then Ψz([u]) ∶= [φz(u)] where φ ∶ T (x, y) →
{Hom(T (z, x), T (z, y))} is defined by composition with u. Let me check that this
Ψz is an injective map. So φz(u)(b) = (dα, b) = d(α(b))±α(db). If for all b we have
this equality, for z = x we get φx(u)(idx)dα(idx) ± α(didx) = dα(idx). This is u on
the left, so u is zero in the domain. So the map is injective. [Some problems with
the setup]

Surjectivity is more tricky, I’ll explain after that talk.
Assume we have defined this, then we’ll call this the Yoneda embedding.
The next topic I’m going to talk about is about [T, Int(M)]. I want to state a

proposition here and Gabriel will prove it later. This is isomorphic to Iso Ho(MT ).
Here M is a C(k)-model category and T is our dg category, and we’ll assume
two conditions, M is cofibrantly generated. This means that there is some set of
cofibrations and trivial cofibrations, suitably small, that generates the cofibrations.
The second thing is, if E → E′ is a quasi-isomorphism in C(k) and X is cofibrant
in M . Then we demand that E ⊗X → E′ ⊗X is an equivalence. Under these two
conditions, we can show this, we can prove this. I want to talk about a lemma,
for f a quasi-equivalence from T to T ′, quasi-fully faithful and quasi-essentially
surjective, then, under the conditions of the hypothesis, the homotopy categories

of Ho(MT ) and Ho(MT ′) are equivalent, witnessed by f∗ and f!.
Let me quickly mention how to prove this lemma and then I’ll stop. The first one

is about any object in the homotopy category. Any object in MT can be written as
a homotopy colimit of something. Let I be a category and let c ∶MT → (MT )I be
the constant functor. Then this induces a map on the homotopy level Ho(MT ) →

Ho((MT )I) which has a left adjoint, the homotopy colimit functor. Any object in
MT can be written hocolim(F ) with F (i) ∶= hxi ⊗Xi where Xi are cofibrant.

The second fact is that hocolim and Lfi (and f∗) commute. So then it’s enough
to prove it for just cofibrant elements hxi⊗Xi. Then he proves the statement in this
case. We have to show there is a natural isomorphism Lf!f

∗ → id and f∗Lf! → id.
These follow similar logic so let me show one case. So what are we trying to do?

We’re trying to show an isomorphism Lf!f
∗(hxi ⊗Xi) ≅ h

xi ⊗Xi.
So I want to say that this is isomorphic in the homotopy category for some x′

to Lf!f
∗(hf(x

′)
⊗ X) by quasi-essential surjectivity. Then this is isomorphic to

Lf!(h
x′
⊗ X), from quasi-full faithfulness. Then the object we have is coifbrant

and then we can erase L, and then f!(h
x′
⊗X), by adjointness, this is the same as

hf(x) ⊗X ≅ hx ⊗X.
The opposite direction can be shown in a similar way. Then we have the equiv-

alence of categories between Ho(MT ) and Ho(MT ′). I should have gone into more
detail but I didn’t have much time, I think this is where I should stop.

18. July 18: Byunghee An: Localization of dg categories

I’ll talk about localization of dg categories. So what’s the localization? Let T
be a dg category. We consider [T ] the homotopy category of T and let S be a
subset of the morphisms in [T ]. So then our goal is to define a localization of T
along S, another dg category LST . This should satisfy some condition, regarding
morphisms contained in S as isomorphisms in some sense. This localization in some
sense is a dg localization. What does that mean? Consider a functor, sorry, okay,
from section two, we consider some functor FT,S from Ho(dg Cat) → Ho(Cat). If
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we have a dg category T ′ then the target category is something FT,S(T
′) ⊂ [T,T ′].

Basically it is a collection of dg functors up to homotopy, and f is in FT,S(T
′) if

and only if the induced functor [f] ∶ [T ]→ [T ′] sends S to isomorphisms in T ′.
So then LST is a dg category such that for any T ′, [LST,T

′] is a subcategory
of [T,T ′] and [LST,T

′] is FT,S(T
′).

Define a functor ` ∶ T → LST . We call ` a localization of T along S if it
satisfies some universal condition. For any f ∶ T → T ′ such that [f](S) lives in the
isomorphisms of T ′, then f factors through `, unique up to natural isomorphism.

Proposition 18.1. For any dg category T and for any S in the morphisms of [T ]

there exists a localization ` ∶ T → LST .

So ` is actually a morphism in Ho(dg Cat).
Before showing the proof, I want to give an easy example. Recall the category

1 with one object and k as self-morphisms. Then ∆1
k has two objects 0 and 1 and

a distinguished morphism u from 0 to 1.
What if T is ∆1

k? A very simple example. T is [T ] and S = {u}. I’ll construct
` ∶ ∆1

k → 1. This sends both objects to ∗ and this functor is obvious. I claim that
` is a localization of T along S. In other words it satsifies the universal condition

T

`

||
f

��

LST

""
T ′

The universal condition is equivalent to the fact that the `∗ ∶ [LST,T ′]→ [T,T ′] is
injective and the image of `∗ is functors f which take S to isomorphisms.

The induced functor `∗ ∶ [1, T ′] → [∆1
k, T

′] is by precomposition. These were
computed in a previous exercise. We have [1, T ′] ≅ Iso(T ′), the isomorphism classes
of objects of T ′. On the other hand, [∆1

k, T
′] is the same as isomorphism classes

of morphisms in [T ′]. If you have a morphism in [T ′], the isomorphism class
means that you can pre- and post-compose with isomorphisms. This functor sends
the isomorphism class of an object to the class of the identity on that object,
[x]↦ [Idx]. This is obviously injective.

For the second condition, let’s see what the isomorphism condition is for this
situation. Let f be a morphism in [∆1

k, T
′] so [f] is the same as a morphism

∆1
k → [T ′] and the condition is that [f](u) is an isomorphism. The image consists

of functors in which u is taken to an identity morphism, and thus an isomorphism.
Then the image of `∗ is a functor which takes u to an isomorphism.

This is a simple example. Let me prove the existence of the localization in the
general case. I want to define LST as a homotopy pushout

∐S∆1
k

//

��

∐S1

T
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So let S actually be the set of representing morphisms. We have a canonical mor-
phism ∆1

k → 1, the canonical one, and we also have the map ∆1
k → T taking u to

the morphism s.
I’ll give a definition of a homotopy colimit. Let D be a diagram like this, a

category, then we can consider C a model category and we can consider the diagram
category CD, and we can take the colimit CD → C. We can construct a functor the
other way by a constant functor. Then actually these two are adjoint to each other
and are a Quillen adjunctions so induce functors on the homotopy category. Then
the left derived functor of the colimit is the homotopy colimit. If D is just the
pushout diagram, then this is just the homotopy pushout.

Now we have an explicit definition of the localization. So how to see that this
is a localization? We have the map from T to LST from it being a (homotopy)
pushout. How about the universal property? Let’s consider T ′? Then f sends all
morphisms f to isomorphisms.

Before we have a break, I want to give an exercise. Show that Lu∆1
k is equivalent

to 1. So this is saying that 1 ⊔L
∆1

k
∆1

k but this is a cofibrant diagram (trust me on

this), and this is just the regular pushout, but pushing out along the identity gives
the other object.

Okay, the next thing I want to talk is an exercise. Let T and T ′ be two dg
categories and S and S′ collections of morphisms in the homotopy categories of T
and T ′ as usual, containing all identities. Then the derived tensor LST ⊗

L LS′T
′ is

equivalent to LS⊗LS′T ⊗L T ′ in the homotopy category of dg categories. We know
T ⊗L T ′ but we need to define S ⊗L S′.

What is the derived tensor product T ⊗L T ′? I erased the definition. This is, in
our paper, this is Q(T ) ⊗Q(T ′), where Q is a cofibrant replacement functor. So
what’s the right definition of S ⊗L S′? This is a set of morphisms in the homotopy
categories of morphisms. We can safely use the representing morphisms. We can
in some sense remove the brackets. Then these, I want to say something like
Q(S)⊗Q(S′), this is not defined but let me write this, consider s ∶ x → y in S. If
we take Q, then we get Qx→ x and Qy → y. We want S ⊗L S′ ⊂ Mor([T ⊗L T ′]).

How to prove the exercise? I think I’m wrong, but let’s look at the right hand
side. Let M be a C(k)-model category. Look at [LS⊗LS′(T ⊗

LT ′), ∫ (M)], this sits
in [T ⊗L T ′, ∫ (M)], this should be injective and the image has some property. We
have injectivity here, and by using something we know, by using the universal prop-
erty of the internal homomorphisms, we can move this to [T,RHom(T ′, ∫ (M))]

which is the same as [T, ∫ (M
T ′)] which is the same as Iso(Ho((MT ′)T )), and then

we can switch it around, this is the same as Iso(Ho(MT⊗T ′)), and what I’ve done
is gotten rid of L.

[some discussion of alternate methods]
So instead let’s take ` ⊗L `′ ∶ T ⊗L T ′ → LST ⊗L LS′T

′. So suppose we have a
functor F to T ′′ and suppose it takes morphisms in S ⊗L S′ to isomorphisms, then
we want to lift to LST ⊗L LS′T

′.
[some more discussion]
The next one is the following proposition.

Proposition 18.2. Let M be a cofibrantly generated C(k)-model category and
M is M viewed as a dg category. Then there is an isomorphism in Ho(dg Cat)
Int(M) ≅ LWM .
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If we invert every weak equivalence in a dg sense, then we get Int(M).
The proof is actually not hard, relatively easier than this exercise. We have a

functor Int(M) →Mf →M , the Int(M) is cofibrant and fibrant objects, and Mf

is the fibrant objects. We denote the inclusions

Mf

k

  
Int(M)

j

;;

i
// M

and we can define fibrant replacement r and cofibrant replacement q. The existence
of these functors q and r comes from cofibrant generation of M (but you could just
assume them). Then (q ○ j)(x) = q(x) → x and (j ○ q)(x) is again q(x), what I
mean is there are natural transformations (q ○ j) → id and (j ○ q) → id and then
id→ r ○ k and id→ k ○ r. These are natural weak equivalences.

Then there are isomorphisms

LW Int(M)→ LWM
f
→ LWM

in Ho(dg Cat). So what we want to prove is that LW (M) ≅ Int(M), and my
claim is that LW (Int(M)) ≅ Int(M). Localization means that we want to invert
some morphisms in M . We want to declare certain morphisms to be isomorphisms.
But W was already, well, [Int(M)] ≅ Ho(M) ≅ M[W −1]. By the definition of

localization we have a functor Int(M)
`
Ð→ LW Int(M). Then if we have f ∶ IntM →

T ′ satisfying some condition then we get a lift from LW Int(M). But what’s the
condition? It’s that when we have [Int(M)] → [T ′] it sends W to isomorphisms.
But this condition is vacuous. So there’s a correspondence.

The next one is the last one:

Proposition 18.3. Let T be a dg-category and S some subset of Mor([T ]), then
` ∶ T → LST induces a functor `∗ ∶D(LS(T ))→D(T ) which is fully faithful and so
that F ∶ T → C(k) is in im`∗ if and only if F (S) lands in quasi-isomorphisms.

Proof. D(T ) ∶= Ho(T − mod ) and D(LST ) ∶= Ho(LST − mod ), and this is the
same as [Int(C(k)LST )] which in turn is the same as [RHom(LST, Int(C(k)))].
We are comparing this to [RHom(T, Int(C(k)))]. Then the functor is well-defined
by functoriality of RHom. To prove fully faithfulness, we first consider the functor
without brackets, `∗ from RHom(LST, Int(C(k))) ≅ ∫ (C(k)LST ) ⊂ LST − mod to
RHom(T, ∫ (C(k))) ≅ ∫ (C(k)T ) ⊂ T − mod . We have `∗ from LST − mod → T −
mod , and fully faithfulness there (or the quasi-version) should imply it at the lower
level. But that I didn’t show.

The second condition is easy. The image of `∗ are the ones that factor through
LST , and so something in S, they must go to quasi-isomorphisms in order to
be isomorphisms in the homotopy category. I couldn’t show the proof for full
faithfulness. But I think this is not too hard. �

I want to introduce one last exercise without an answer. The final exercise is
like this.

Let ` be the T → LST a localization of dg categories. Then we can consider,

this induces, f ∶ T → T ′ induces MT ←MT ′ , this is natural because the objects are
functors and we can compose with f . But actually there is a left adjoint f!, here
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M is a C(k)-model category. This pair is a Quillen adjunction and moreover if f
is an equivalence (isomorphism in the homotopy category) then these are a Quillen
equivalence. This part is Lemma 1, but it uses this fact about f!. Especially if f is a
localization, then the left adjoint `! exists and its derived functor L`!, well, first `! ∶
T − mod → LST − mod , then the derived functor is on the homotopy categories.
So this is D(T op) → D(LST

op). We’ve got a functor between derived categories.
Let WS be the morphisms in D(T op) such that L`!(u) is an isomorphism. The
first question is about classifying the elements of WS . I don’t want to talk about
it. The second is more interesting. We can invert WS (which satisfies a 2 out of 3

property in D(T op)) and the second statement is that D(T op)[W −1
S ]

L`!
Ð→D(LST

op)

and that’s an equivalence of categories. So you can localize either before or after
passing to modules.

I wanted to solve this but I don’t have enough time. I’ll stop.

19. July 25: Tae-Su Kim: Triangulated dg categories

Let T be a dg category over k. I’ll remind you that T op − mod is the category
of dg functors T op → C(k). We have h ∶ T → T op − mod , the Yoneda embedding,
which takes x to y ↦ T (y, x) and morphism via compositions.

Now some facts about this Yoneda embedding are:

● h(x) is cofibrant and fibrant for all x,
● That is, h is a functor from T to Int(T op− mod ), the fibrant and cofibrant

objects here; we’ll denote Int(T op − mod ) by T̂ .
● h is quasi-fully faithful, so
● [h] ∶ [T ]→ [T̂ ] is fully faithful.

Definition 19.1. F in T op − mod is quasi-representable if F is in the essential
image of [h], that is, there exists x in T so that F ≅ hx in [T̂ ].

For F in T op − mod , define a functor χF ∶ T op − mod → k − mod takes G to
Hom[T op− mod ](F,G) and morphism by compositions.

Definition 19.2. F in T op − mod is compact if χF (⊕iGi) ≅⊕i χF (Gi)

Here the direct sum of functors T op → C(k) is evaluated as the direct sum
objectwise in T op.

We claim that quasi-representability implies compactness. How to show this?
Assume that we have χhx(G) ≅H0(Gx) and G =⊕iGi and F is quasi-representable

with x as its representing object, then χF (G) is χhx(G) which is H0(Gx) which is

H0((⊕Gi)x) which is ⊕H0((Gi)x) which is eventually isomorphisc to ⊕χF (Gi).
So we should show this isomorphism χh(G) ≅ H0(Gx)? I’ll construct an iso-

morphism between Hom[T̂ ](hx,G) and H0(Gx). So first we’ll construct Φ from

HomT̂ (hx,G) → Gx. So such a morhpism is α a natural transformation, which is
{αy ∶ T (y, x) → Gy}. We send this α to αx(idx). This is a chain map because
dα = {dαy} ↦ (dα)x(idx) = d(αx(idx)) ± αx(didx); the second term vanishes be-
cause idx is always closed. So this is d(αx(idx)). So this Φ is a chain map, also,
degree zero.

This then induces a map on cohomology, and taking the degree zero part, we
get a map from H0(HomT̂ (hx,G))→H0(Gx), and by definition the left hand side
here is Hom[T̂ ](hx,G).
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How do we define an inverse Ψ? Take a ∈ Gx to Ψ(a)y ∶ (hx)y → Gy, where this
sends φ in T (y, x) = (hx)y to G(φ)(a). We can show that this is a chain map.

d(Ψ(a)y)(φ) = d(Ψ(a)y(φ)) ±Ψ(a)y(dφ)

= d(G(φ)(a)) ±G(dφ)(a)

= d(G(φ)(a)) ± dG(φ)(a)

= ±G(φ)(da) = ±Ψ(da)y(φ)

so we have that this is a chain map up to a sign that I’ll leave as an exercise.
Then we can define the inverse Ψ as [a] ↦ [{Ψ(a)y}]. Now for x in T , we can

consider the composition H0(G)→ Hom[T̂ ](hx,G)→H0(Gx), which sends [a] first

to the class of {φ ↦ G(φ)(a)} which goes to G(idx)(a) which is [id(a)] = [a]. We
checked that Φ ○Ψ is the identity. Similarly we can show the other direction is the
identity but I’ll omit that.

Definition 19.3. A dg category T is triangulated if every compact object in T̂ is
quasi-representable.

We showed that quasi-representables are compact but we consider here the op-
posite direction. If every compact object is quasi-representable, then we call this
triangulated. We call the full category of triangulated dg categories dg− cattr. It’s
easy to see that we have the inclusion ι ∶ Ho(dg− cattr)↪ Ho(dg− cat).

[discussion of what the homotopy category of triangulated dg categories means].

Inside T̂ we have T̂pe, the full subcategory of compact objects in T̂ . We have

h ∶ T → T̂ actually has its essential image in T̂pe, because quasi-representability
implies compactness. So we’ll use the same notation h. If T is triangulated, then
every compact object is quasi-representable. Then there is an isomorphism between
T and T̂pe in the homotopy category of dg− cat. Conversely, if h ∶ T → T̂pe is
essentially surjective (this is the essential image), then compact objects are quasi-
representable so that T is triangulated.

Now I want to show that T̂pe is triangulated. One way to show this is using a
theorem from Toën’s other paper, namely that the Yoneda embedding induces a
quasi-equivalence

RHom(T̂ op
pe , Int(C(k)))→ RHom(T op, Int(C(k)))

whose left hand side is ̂̂
peT . Inside of this thing we can find ̂̂

peT pe. So we get a
functor (̂ )pe from Ho(dg− cat) to Ho(dg− cattr), the triangulated hull of T . This
pe is “perfect.” For R a k-algebra and the category BR, then

[B̂Rpe] ≅Hperf(R) ⊂D(R).

Triangulated in this sense implies that there is a natural triangulated structure in
the ordinary sense on [T ].

Let me continue. So now we have two functors between Ho(dg−Cat) and
Ho(dg cattr), ι and (̂ )pe. We can show that under certain conditions ι is right
adjoint. To show this we need a lemma. For more detail you can check Toën’s
paper, Lemma 7.3, which says

Lemma 19.1. Let T ′ be triangulated. Under certain conditions (T ′op
− mod is

cofibrantly generated and for F ∈ T ′op
− mod , Fx is projective for all x. Then h∗ ∶

(T ′op
− mod )T̂pe → (T ′op

− mod )T is a Quillen equivalence which then induces an
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equivalence on homotopy categories, so we have a bijection of isomorphism classes
of objects in these homotopy categories.

We assumed that T ′ is triangulated, so that it is isomorphic to T̂ ′pe in the
homotopy category. Consider this diagram.

HomHo(dg cattr)(T̂pe, T
′) // HomHo(dg cat)(T̂pe, Int(T ′op − mod ))

≅
��

Iso(Ho((T ′op − mod )T̂pe))

��
Iso(Ho((T ′op − mod )T ))

��
HomHo(dg cat)(T, ιT ′) // Hom(Ho(dg cat))(T, Int(T ′op − mod ))

The image of the top horizonal map are the morphisms which factor T̂pe → T ′ →
Int(T ′op − mod ) and the same for the bottom map. It is actually clear that the
property of factorizing is independent of the bijection between the isomorphism
classes of the homotopy categories, so these two criteria of the inclusion, are the
same and the two hom sets are the same.

The last thing I have to talk about is Morita equivalence.

Definition 19.4. f ∶ T → T ′ a morphism in Ho(dg Cat) is a Morita equivalence if

f̂pe ∶ T̂pe → T̂ ′pe is an isomorphism.

Denote by WMor the set of all Morita equivalences. We consider localization at
Morita equivalences. We want to consider

Ho(dg cat)
(̂ )pe //

`

��

Ho(dg cattr)

W −1
Mor Ho(dg cat)

99

and you can actually show that this dotted arrow is an equivalence. It follows from
some formal steps which is related to the localization process.

Proposition 19.1. Let f ∶ T → T ′ be a morphism in dg cat. Then the following
are equivalent:

(1) f is a Morita equivalence.
(2) For T0 is triangulated we have that [T ′, T0]→ [T,T0] is a bijection.
(3) The induced functor f∗ ∶D(T ′)→D(T ) is an equivalence of categories
(4) The induced functor Lf! ∶ D(T ) → D(T ′) is an equivalence of categories

after restriction to compact objects.

One of the steps here is hard but you can do it.
[Toën took the simplest definition, being equivalent to the category of perfect

objects, but it’s better than being triangulated to be isomorphic to this. This is
like triangulated plus idempotent complete.]
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20. 8/8: Weonmo Lee: Morita equivalence

Remember the Yoneda embedding h ∶ T → T̂ ∶= Int(T op −Mod) which takes x to
hx ∶ T

op → k − Mod. We showed that d is quasi-fully faithful so that [h] ∶ [T ] →

[T̂ ] =D(T op) is fully faithful.
We say that F ∈ D(T op) is quasi-representable if F is in the essential image of

h, that is, if F ≅ hx or some x.
There was a fact, if F is quasi-representable, then F is compact. If the opposite

implication holds, then we call T triangulated.

Proposition 20.1. Ho(dg Cattr
) → Ho(dg Cat) has a left adjoint (̂ )pe, which

takes T to T̂pe, the full subcategory of compact objects of T .

Last time we defined Morita equivalence:

Definition 20.1. We cal f ∶ T → T ′ a Morita equivalence if f̂pe ∶ T̂pe → T̂ ′pe gives
an isomorphism in Ho(dg Cat).

The localization W −1
Mor Ho(dg Cat) is equivalent to Ho(dg Cattr

).

Proposition 20.2. Let f ∶ T → T ′ be a morphism in dg cat. Then the following
are equivalent:

(1) f is a Morita equivalence.
(2) For T0 is triangulated we have that [T ′, T0]→ [T,T0] is a bijection.
(3) The induced functor f∗ ∶D(T ′op)→D(T op) is an equivalence of categories
(4) The induced functor Lf! ∶D(T op)→D(T ′op) is an equivalence of categories

after restriction to compact objects.

To try to prove this, to get between the first and the second, we have [T ′, T0] =

HomHo(dg Cat)(T ′, T0), and then by adjointness this is HomHo(dg Cattr)(T̂ ′pe, T0).

[T ′, T0] // [T,T0]

HomHo(dg Cat)(T ′, T0)

≅
��

// HomHo(dg Cat)(T,T0)

HomHo(dg Cattr)(T̂ ′pe, T0) // HomHo(dg Cattr)(T̂pe, T0)

[long discussion]

21. October 17: Damien Lejay

Today we have the last talk about dg categories in this session. I want to say
some interesting things, summarize what we’ve seen, and so on, like a free open
discussion. In the second part we are going to discuss what we want to do for the
next year, we have lost quite a few people. As what happened this year, you will
decide what we’re going to do.

So let me just recall that we started with a notion of dg categories which was a
good categorical notion because there is nothing in this definition, we’ve changed
the morphisms from being sets to chain complexes. With this notion we can have
a property of a dg category, which is to be triangulated. This was one of the main
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goals of introducing everything, which is to get to triangulation. Let me recall
quickly what is a triangulated category. Recall that you can always embed A a dg-
category into its category of Aop-modules, which is like the category of modules on
a dg-algebra. This is triangulated and we can do whatever we want. Sitting inside
Aop-modules are the compact modules, x is compact if Hom(x, ) commutes with
all direct sums. This goes from Ho(Aop − mod )→ k− mod , and you check that
this commutes with direct sums. All the representable functors become compact
objects. If this map from A to compact Aop-modules is an equivalence, we call this
triangulated. You can describe this in another way by saying that the category
of compact objects is the smallest subcategory of modules containing A, sums,
retracts, and cones.

With this notion it was possible to do some things that it was impossible to do
in the beginning.

(1) We have functorial cones,
(2) the natural link between enriched Hom and the shift,

● you can take the tensor product of dg categories, and so of triangulated dg
categories. You recomplete, so if T and T ′ are triangulated dg categories,
then you take the regular tensor product and then re-add everything you
are lacking, T̂ ⊗ T ′ gives triangulated dg categories a monoidal product,

● which has a right adjoint RHom, the internal hom of triangulated dg cat-
egories.

● Since we have been describing model category structures, we can compute
all (homotopy) limits and colimits. It’s always complicated to actually
compute, but we at least have the theory,

● and as a direct application that we have seen long ago, if you take X and
Y two smooth proper schemes in algebraic geometry you get a derived
category of vector bundles, and on the tensor product, you get Lpe(X) ⊗

Lpe(Y ) ≅ Lpe(X × Y ). People in algebraic geometry said that this was
expected but that this wasn’t provable with triangulated categories without
dg enhancement. Nowadays people use dg categories. I don’t know how
much of the papers rely on this.

I realize I started with numbers and moved to itemization.
I want to make a comment about the kind of thing that Calin has been do-

ing. Between dg categories and triangulated dg categories there is a forgetful and
a completion functor, you look at Aop-modules and take perfect modules in it.
This is described as compact objects. This is not concrete. I haven’t given you a
description, and this is where the twisted complexes are going to come.

A bit of notation. Toën says that triangulation is the same as having the zero
object, sums, triangles, and idempotent-complete. In the 80s Bondal–Kapranov
tell you about pre-triangulated, which means stable under [+1], [−1], and cones.
This doesn’t have zero objects, sums, or idempotent completeness. I’d even use
the definition of Lurie, who uses stable for zero objects, sums, and triangles. No
idempotent-complete.

So people are not assuming the same properties on the categories. You can
compose your completion functors and just get the things that you want.

Say you start with A a dg-category and the first thing you want to do is add
the sums and the zero object. You add, formally, the sums, you replace the objects
of A with sums, so collections Xi, finite, and the new Hom is Hom(Xi, Yj) is
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∏i,j Hom(Xi, Yj). This gives you an adjunction between dg-categories and dg-
categories with finite sums.

Normally the next thing you would do is add triangles, but since this is difficult
I’ll do it last and I’ll say how you add completion of idempotents. Take any element
X and an idempotent π so π2 = π. You say the category is idempotent complete
if you can compute the kernel or cokernel of π. There is a way to build a category
where it will exist. You create a new category Cidem out of C where the objects are
pairs (X,π), an object and an idempotent. The maps commute with the idempo-
tents. There is an embedding of C in Cidem because the identity is idempotent. A
truly easy exercise is that the kernel of the cokernel of π is (X,π), and you created
the kernels that you want to have. This works before or after taking the sums. For
the hard step I’ll only use, I want to build cones, shifts, and everything, I should
have chain complexes. Chain complexes of elements of your category don’t make
sense, at the map level it makes sense but not for objects. So they build PreTri(A),
which are families {Xi} with endomorphisms that satisfy some relations. You have
to use the dg structure you started with, and the idea is, if this is already a category
of chain complexes, what should I add, how should I write it down. If you take
chain complexes here, you’re creating chain complexes of chain complexes. When
you have a bicomplex, you want to create the totalization of it, adding up the two
differentials. You have d + d′ = d′′. Then what you wish for is that (d′′)2 = 0. For
a bicomplex you ask that d2 and (d′)2 = 0, and for commutation between the two,
and so the sum that comes out is zero.

I have a complex of complexes, and d2 = 0. Maybe I don’t want (d′)2 = 0, and if
you try to compute what is (d′′)2 you get d2+∂d′+(d′)2. You ask that ∂d′+(d′)2 = 0
and actually you don’t need to start with chain complexes, I don’t need a complete
chain complex, and I recreate everything, these are the twisted chain complexes. I
don’t want to give the details but maybe I can ask about the cones.

If you have a map f ∶X →X ′ between those two constructions and you want to
know what is the cone of f , it should be a pair (X ′′, d′′), and you suppose you have

sums in your category, and so the cone isX ′′
i =Xi op lusX ′

i−1, and d′′ij = (
dij fij
0 d′ij

)

and it’s the same proof as usual. They show a lot of other things, that this has lots
of nice categorical properties, and this is a constructive approach. Normally if you
start with a dg category and add sums, cones, and then idempotents, this should
coincide with the hull defined by Toën.

That’s what I wanted to say about dg categories. Let’s ask any question and
then just discuss our wishlist for this year.

22. November 7: Christophe Wacheux: Homotopy Algebras

(My understanding of) A∞ algebras and A∞ categories. I’ll define what is an A∞
algebra and I don’t know if I’ll define the categories, we’ll see along the way. For
reference, I’m following the work of Keller, if you take A∞ algebra the first work
you thought of is Keller, his student K. Lefévre-Hasegawa, but not Kontsevich,
which apparently adopts a very different approach. I’m convinced it has its merits
and all, but it was inaccessible and doesn’t give a good introduction.

Okay, now I’m going to set k a field, V a graded k-vector space, so maybe
sometimes I’ll just say GVS, so I mean I have V = ⊕p∈Z V p and I define V [q] by
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(V [q])p ∶= V p+q and you will see that I’ll make an important use of this shift. If
v ∈ V p, then it is said to be homogeneous of degree p and we say ∣V ∣ = p.

The category G, I don’t know if there is conventional notation GrV, has objects
graded k-vector spaces and morphisms, let M and L be two graded vector spaces,
then HomGrV(M,L) is a graded vector space, in category theory it means something
I guess when the homs are again an object, with component

HomGrV(M,L)r ∶=∏
p∈Z

HomV ec(M
p, L[r]p).

So f is said to be of degree r.
So of course you have to pay attention to how you define your morphisms even

though they might look the same. If you shift then the degree will change.
Now I will define what is called the monoidal structure. First I’ll define M ⊗ L

to be a graded vector space with

(M ⊗L)n = ⊕
p+q=n

Mp
⊗k L

q

where here we have the tensor product of vector spaces, the usual tensor product.
Now if f ∶M →M ′ and g ∶ L → L′, I also need to define what is f ⊗ g, this will

go from M ⊗ L → M ′ ⊗ L′, and I define this so that ∣f ⊗ g∣ = ∣f ∣ + ∣g∣, which is a
consequence of my definition, I can define it by saying that for v and w homogeneous

(f ⊗ g)(v ⊗w) = (−1)∣g∣∣v∣f(v)⊗ g(w).

This is some trick because to get the symbols from the one order to the other
order you should permute the g and the v. This amounts to a choice of a map
M ⊗L→ L⊗M , x⊗ y ↦ (−1)∣x∣∣y∣y ⊗ x.

The neutral element for ⊗ is e ∶=

⎧⎪⎪
⎨
⎪⎪⎩

e0 = k

en = {0}, n ≠ 0.
So now GrV is a symmetric

monoidal category. An interesting point here is that the morphisms of graded
vector spaces are again graded vector spaces. Now if I have (M,dM) a cochain
complex, meaning that dM ∈ HomGrV(M,M)1 satisfying d2

M = 0, and for (M,dM)

and (L,dL) two complexes, we equip HomGrV(M,L) with differential δ where δr ∶

HomGrV(M,L)r → HomGrV(M,L)r+1, with δr(f) = dL ○ f − (−1)∣f ∣f ○dM of degree
f .

I guess, then, f and f ′, morphisms of graded vector spaces (or maybe I’d
better reduce to maps of complexes), are homotopic if f − f ′ = δ(h) for some

h ∈ HomGrV(M,L)∣f ∣−1.
A note is that h and h′ homotopic induce the same maps on cohomology. Nor-

mally I’m also supposed to set, if I shift, I set dV [1] = −dV .
Now we are ready for A∞ algebras.

Definition 22.1. An A∞ algebra is a graded vector space A with maps bn ∶

(A[1])⊗n → A[1] such that the degree of bn is 1, for n ≥ 1.

Here I should stop and make a big comment. Sometimes you want maps A⊗n to
A of degree 2 − n. Understanding the difference of signs is sometimes an annoying
thing.

So I just wanted to say that the link between mn and bn, if what I read in
Lefèvre-Hasegawa, there is a formula linking the bn and the formula linking the
mn, there are no pluses or minuses linking the bn, but for mn there are signs, and
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he said that, yes, there is no precise, no canonical choice of signs between the mn,
and, which, I think this is, uh, [some discussion]

Let’s write the formula bn satisfies.

∑
i+j+`=n

bi+1+` ○ (1⊗i ⊗ bj ⊗ 1⊗`) = 0

for all n ≥ 1.
Several comments. The advantage of defining bn like this, now I have maps that

are all of the same degree, and also, because I take this as a convention, with this
I don’t have sign troubles, but I’ll have sign issues.

I never apply it to an element, I’ve never come across it. Okay, so now a repre-
sentation, if I take, or realization, [pictures].

In this case he has a sign of (−1)ij+`, but he says there’s no canonical choice, so.
Okay so what do we have? For n = 1 you have b1 ○ b1 = 0 so (A[1], b1) is a

complex.
For n = 2, I can have b2(1 ⊗ b1) + b2(b1 ⊗ 1) + b1(b2) = 0. If you remember the

formula I erased, we know that b2 goes from A[1]⊗A[1]→ A[1]. Then A[1]⊗A[1]
is a complex with differential dA[1] ⊗ 1 + 1⊗ dA[1]. Now if I write δ(b2) I get that

it is dA[1]b2 − (−1)∣b2∣b2 ○ (dA[1] ⊗ 1 + 1⊗ dA[1]), and we know that this is equal to
zero by the A∞ equation (A2). This means that b2 is a morphism of complexes.

Now this is where it gets funny. This is also supposed to be like the graded
Leibniz rule, because b2 is actually the multiplication but here b2 is defined on
A[1] so you have to get back, that’s the discussion we had with you, so actually

m2(x, y) = (−1)∣x∣s−1b2(sx, sy). Normally if we check the formula, we should find
out that, I’m going to switch it, I’m going to change in the formula, so I have

dA ○m2(x, y) =m2(dA(x)⊗ y) + (−1)xm2(x, dA(y))

which is graded Leibniz. Next, (A3) implies that

b2 ○ (b2 ⊗ 1 + 1⊗ b2)

+ b1 ○ b3 + b3 ○ (b1 ⊗ 1⊗ 1) + b3 ○ (1⊗ b1 ⊗ 1) + b3 ○ (1⊗ 1⊗ b1)

= 0

and when you switch to m2 you get associativity of m2 up to a homotopy which is
more or less m3.

For n > 3 you have a quadratic equality up to higher homotopy. Also, a conse-
quence of what I said, if bn = 0 for all n ≥ 3, then we have a dg algebra and vice
versa a dg algebra gives you an A∞ algebra with bn = 0 for n ≥ 3.

What about n = 0? If I try to adapt the formula, allowing n = 0? Then applying
bluntly what happens, in that case, b0 ∶ k → A[1], you get that this would modify
all the equations, and (A0) now says that b1 ○ b0 = 0 but (A1) tells youo that
b21 = −b2(1 ⊗ b0 + b0 ⊗ 1) so this is what is called, this is not zero, this is what is
called weak A∞-algebra or curved A∞ algebra. In Keller and Lefévre-Hasegawa,
they say little is known. We’ll speak about the rest of this next week.
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23. November 14: Christophe Wacheux: Homotopy Algebras II

So first I’ll come back on A∞ algebra. I had stopped giving the definition of an
A∞ algebra in particular. I’ll rewrite the equation I called An, which is

∑
i+j+`=n

bi+1+` ○ (1⊗i ⊗ bj ⊗ 1⊗`) = 0

I had a problem interpreting how this formula changes when you switch bn (which
is an operation (A[1])⊗n → A[1]) to mn (an operation A⊗n → A), how we could
interpret A2 as a graded Leibniz rule on A and A3 as an associativity up to ho-
motopy. So it turns out that I had, I was told that there was no canonical choice
in the sign between bn and the mn. But it’s only half true. There is no canonical
choice of sign, but it amounts to precisely choosing what they call the braiding,
M ⊗ L → L ⊗M , and I choose this isomorphism x ⊗ y ↦ (−1)∣x∣∣y∣y ⊗ x, and this
makes my braided monoidal category into a symmetric monoidal category.

So I’d just like to make it up to you and show how the graded Leibniz rule appears
for m2, there’s a little game that depends on whether I evaluate on elements of A
or not. If I just set, if I try to recover the graded Leibniz rule of A,m1,m2 from
A2.

So first let’s set s ∶ A → A[1], if I have a homogeneous element of degree p, I go
v ∈ Ap goes to v in A[1]pi−1, so s is of degree −1.

Then m2 ∶= s
−1○b2○(s⊗s) and m1 ∶= s

−1○b○s. These really, these start from A⊗A
to A or A → A. On each of these I could put a plus or minus, and that wouldn’t
change whether these are derivations or chain complexes or whatever. Now I have
given myself a braiding and I didn’t write any elements, and when I write those I’ll
have to be careful.

So now let’s write the Leibniz rule, let a and b be in A, and then I’m going to
show that the graded Leibniz rule is equivalent to A2. So I write

m1 ○m2(a⊗ b) =m2(m1(a)⊗ b) + (−1)∣a∣m2(a⊗m1(b)).

This is my graded Leibniz rule. Now I want to write this right hand side as

m2 ○ (m1 ⊗ 1)(a⊗ b) +m2 ○ (1⊗m1)(a⊗ b)

because of the formula (f ⊗ g)(u⊗ v) = (−1)∣g∣∣u∣f(u)⊗ g(v). Then I have

m1 ○m2 =m2 ○ (m1 ⊗ 1 + 1⊗m1).

Now I just exchange the formulas:

s−1
○ b1 ○ s ○ s

−1
○ b2 ○ (s⊗ s)

= s−1
○ b2 ○ (s⊗ s) ○ ((s

−1
○ b1 ○ s)⊗ 1 + 1⊗ (s−1

○ b1 ○ s))

and so expanding and cancelling (say, the s−1 at the beginning) I have

b1 ○ b2 ○ (s⊗ s) = b2 ○ ((−1)∣s∣∣s
−1b1s∣(b1 ○ s)⊗ s + s⊗ b1 ○ s)

= b2 ○ (−(b1 ⊗ 1) ○ (s⊗ s) − (1⊗ b1) ○ (s⊗ s))

which is

b1 ○ b2 ○ (s⊗ s) = −b2 ○ (b1 ⊗ 1 + 1⊗ b1) ○ (s⊗ s)

and then cancelling the s⊗ s you get precisely A2.
This was a bit tedious but I found it a bit instructive. But let’s just do this once.
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Going on, I have an example taken from Keller but I’ll skip it for later, especially
since I cannot push it until the end, and let’s just define morphisms and quasi-
isomorphisms of A∞ algebras.

Definition 23.1. A morphism of A∞ algebras f ∶ (A, bA) → (B, bB) is given by a
family of homogeneous maps fn with ∣fn∣ = 0 which go from A[1]⊗n → B[1] and
verify for all n ≥ 1

∑
i+j+`=n

fi+1+`(1⊗i ⊗ bAj ⊗ 1⊗`) = ∑
i1+⋯+is=n

bBs (fi1 ⊗⋯⊗ fis).

Note that f̃1 ∶= s
−1 ○ f1 ○ s ∶ (A,m1)→ (B,m1) is a morphism of complexes. It is

compatible with m2 up to a homotopy given by f̃2 ∶= s
−1 ○ f2 ○ (s⊗ s).

In particular, f̃1 induces a morphism of algebras at the homological level, H[f1] ∶

H∗(A)→H∗(B). I should have said that (H∗(A),H[mA
2 ]) and (H∗(B),H[mB

2 ])

are (non-unital) algebras. Remember that if you look at A3, this is something like
m2 ○ (1 ⊗ m2) = m2 ○ (m2 ⊗ 1) + δ(m3), so that on the homology you get true
associativity. So now there is a notion of a homological unit, which is called, for
instance in Keller.

Definition 23.2. A homological unit is a map ηA ∶ k→ A such that dAηA = 0 and
it induces a unit for (H∗(A),H[mA

2 ]).

You can also define a strict unit, where f ∶ k[1] → A[1] has f1 essentially the
unit and fn = 0 for n ≥ 2. [There is something wrong here]. Let me try again. A
strict unit is a map k → A[1] of degree −1 such that b2(1⊗ e) = 1 = b2(e⊗ 1) and
bn(1

⊗i ⊗ e⊗ 1⊗j) = 0 if i + j is not 1.
Now you should check immediately that this is a unit for H and the remark I

made last week is that in Fukaya–Oh–Ohta–Ono, there is another notion of homo-
logical unit, where this one only uses mA

2 and not the higher homotopy, and there
there is another definition and this, apparently, when you do, Lefèvre-Hasegawa
says when you look a cohomology over a field all of the kinds of units are the same.
These other people (Lyubashenko, e.g.) work over a ring. It could turn out to be
important because I think the Fukaya category is written over a ring, what they
call the Novikov ring, and if at some point you look at the Fukaya category it might
turn out that the unit will bother us.

So just, we say f is an A∞ quasi-isomorphism if f1 is a quasi-isomorphism. I
define

(f ○ g)n = ∑
i1+⋯+is=n

fs ○ (gi1 ⊗⋯⊗ gis)

and the identity morphism of A[1] has f1 = 1 and all higher components zero.
This defines A∞ algebras as a category. Of course it’s not yet an A∞ category

and I promised Damien that I’d give a definition before the end so I’ll rush.
Actually there is a lot of stuff, when you can write, explaining the relation

between A∞ algebras and dg algebras, there are propositions relating the two, the
fact that if you have an A∞ algebra and a map to a complex V then you can push
the structure of the A∞ algebra, there is a structure on V so that the map is a map
of A∞ algebras. I won’t write it, I’ll come back to it if I have time, but I want to
be sure that I’ve written the definition of an A∞ category. Is that okay?

Somewhere I read that A∞ categories are a “horizontal categorification” of A∞-
algebra, meaning that an A∞ category, well you ask yourself if you know what is



54 GABRIEL C. DRUMMOND-COLE

an A∞ algebra, then an A∞ algebra is an A∞ category with one object. There is
no well-defined “horizontal categorification” but anyway. You can define an A∞
category as an A∞ algebra over some category, but it required some stuff that I
didn’t think we should go through.

Definition 23.3. An A∞ category A is the data of

● A set obj(A) of objects,
● For A and A′ objects, a graded vector space Mor(A,A′) =∶ A(A,A′)
● For any sequence A0, . . . ,An of objects, an operator bn

A(A0,A1)[1]⊗⋯⊗A(An−1,An)[1]→ A(A0,An)[1]

of degree 1 (for n ≥ 1) that verify the relations An (this is maybe not quite
so easy to understand I guess):

∑
i+j+`=n

bi+1+` ○ (1⊗i ⊗ bj ⊗ 1⊗`) = 0

and I think this is misleading because all the 1 have different domains, say.
I’d rather write

∑
i+j+`=n

bi+1+` ○ (1A(A0,A1)[1] ⊗⋯⊗ 1A(Ai−1,Ai)[1] ⊗ bj ⊗ 1A(Ai+j ,Ai+j+1)[1] ⊗⋯⊗ 1A(An−1,An))
= 0

I have like ten minutes left. I can stop here or give a couple of properties I
mentioned about dg algebras or the example in Keller related to Hochschild coho-
mology.

24. November 28: Weonmo Lee /Byung Hee An

I talked about the model category, where W consists of the quasi-isomorphisms,
F consists of the degreewise surjective morphisms and the cofibrations are those
that lift against the acyclic fibrations. This gives a model structure on differential
graded algebras over k. I mentioned five axioms last time. The last thing I didn’t
prove was the fourth condition, which describes, for any commutative diagram

A X

B Y

where A → B is a cofibration, X → Y is a fibration, and one of the two is a weak
equivalence, then there exists h from B to X making the diagram commute. So for
the proof we will use the lemma, we had the lemma last time, by following Jardine’s
paper, he assumes that i is a trivial cofibration. Then he describes, the fifth axiom,
I proved this last time

Lemma 24.1. Any morphism f ∶X → Y can be factorized as a cofibration followed
by a fibration, q ○ j either one of which can be assumed acyclic.

So the proof of the fourth axiom, suppose we have the trivial cofibration from
A to B, then it can be factored as j and then q. By construction, the thing in
the middle was A ∗ (∗b∈BG(b)) which I will denote B̄. This is a kind of filtered
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colimit of the tensor algebra. So you can write for any trivial cofibration A → B
the following commutative square

A B̄

B B

and then B̄ → B is an acyclic fibration and so we have a map from B to B̄ making
the diagram commute. So then i is a retract of j. This means that i and j fit into
a diagram as follows:

A A A

B B̄ B

i

id

j i

id

q

So one thing that is not clear to me is that in the proof we just mentioned, this is
a trivial fibration and so you have a lifting.

[long discussion]

24.1. The bar functor. Okay, my title is the bar functor. I want to define functors
between the categories of augmented algebras and the coaugmented coalgebras. I’ll
also use A∞ algebras. I have a non-full subcategory inclusion of algebras and A∞
algebras; I also have a full subcategory inclusion of cofibrant fibrant coalgebras
and coalgebras. I have bar and cobar between algebras and coalgebras. I want
to define a bar functor B∞ from A∞ algebras to the cofibrant fibrant coalgebras
which is an equivalence of categories. I want to show that all of these functors
induce equivalences on the homotopy categories.

Actually, using this, one can think, well,

Proposition 24.1. Let A be an A∞ algebra over k. Then there exists an algebra
U(A) such that A → U(A) is a quasi-isomorphism, this is just the composition of
the three functors, ΩB∞A.

Let’s start with algebras. k is a field and algebras are always augmented and
unital. Unital means it has an element 1. Augmented means there is an map
ε ∶ A → k which sends 1 to 1. This has a model structure with weak equivalences
the quasi-isomorphisms and fibrations the surjections. The cofibrations have some
lifting property.

There is a theorem, that these three define a model structure on differential
graded (augmented unital) algebras.

Now I want to define coalgebras and the bar and cobar construction. Here I want
augmented, dg coalgebras, it’s basically a chain complex, it has a differential and
a grading, and it has another operation, called a coproduct, (C,∆, d, ε, η). This is
∆ ∶ C → C ⊗ C satisfying ∆ ○ d = (1 ⊗ d + d ⊗ 1) ○ ∆. Our ε is a coaugmentation
k→ C and η is a counit C → k. This satisfies η ○ ε = 1k.

Now let V be a complex. Then TV = ⊕V ⊗n. One can assign a coproduct here
like this: ∆ ∶ TV → TV ⊠ TV (introducing ⊠ to separate the tensors) then

(v1 ⊗⋯⊗ vn)↦∑(v1 ⊗⋯⊗ vi) ⊠ (vi+1 ⊗⋯⊗ vn).
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This sum ranges from 0 to n, and one can prove that this defines a coproduct.
I want to define a coaugmentation and unit map. You have an inclusion k → V ⊗0

and the projection is the counit.
So to show that this has a coalgebra structure I write T cV , regarding this as a

coalgebra.
So if you have a complex V then we can make TV an algebra, and this con-

struction is kind of a free functor, from complexes to algebras, and this satisfies
some universal property. We have a canonical map V → TV , and given a map from
V → C, a dg map to an algebra map C.

As a coalgebra TV is not cofree. If you have a map T cV → V , even if you have a
map, a k-linear map C → V , we might not be able to fill with an arrow C → T cV .

So maybe our, there is another construction to make something slightly bigger,
a bigger coalgebra which is cofree, but in this talk I want to shrink our category of
coalgebras. Instead of thinking of all coalgebras, I want to consider some “cocom-
plete” coalgebras. We say C a coalgebra is cocomplete if C = ⋃ker(C → C⊗n →
(C/k)⊗n). If you apply the coproduct (n − 1) times, then mod out by the scalar
part at each factor, the kernel here means that if we take some iterated coproduct,
then there is eventually some scalar in each factor. Then Cog is our category of
cocomplete coalgebras.

One can prove that T cV → V is now a cofree cocomplete coaugmented coalgebra.
Any element is a sum up to a finite length of tensors. If you take the coproduct
more than n times you will have at least one scalar factor. So it’s cocomplete
(conilpotent). Now it’s cofree in this category.

Now let A be a dg algebra and consider a chain complex of k-linear maps
Homk(C,A), and these are both graded, and we want a differential on here and

a multiplication. So d(f) = d ○ f − (−1)∣f ∣f ○ d. Then the product f ∗ g (for µ
the product on A) is µ ○ (f ⊗ g) ○ ∆. We need to check that this differential is a
derivation with respect to this product, but having done so, then Homk(C,A) is a
dg algebra.

Here’s a definition.

Definition 24.1. A twisting cochain τ in Hom1
(C,A) is a element that satisfies

dτ + τ ∗ τ = 0

So then Tw(C,A) will be the set of twisting cochains, and this gives for fixed A
a functor from Cog to sets. This is a subset of Hom(C,A). If it defines a functor
it should be contravariant.

So given f ∶ C →D, we can ask if τ ○ f is a twisting cochain for τ twisting in D.
Then we see d(τ ○f)+(τ ○f)∗(τ ○f) = d○τ ○f +τ ○f ○d+µ○(τ ○f)⊗(τ ○f)○∆ and
since f commutes with coproducts and differentials this is (dτ + τ ∗ τ) ○ f which is
zero.

So this is really a functor. This functor is (co)representable byBA, so Tw(C,A) ≅

Hom(C,BA), and so replacing C with BA we get a special (universal) twisting
cochain τ0.

So BA = T c(SA) along with a differential D which has two components, one

which looks like 1⊗a ⊗ dsA ⊗ 1⊗b and the other given by 1⊗a ⊗ b2 ⊗ 1⊗(b−1). You
have another functor, fixing C instead of A, defining a set Tw(C,A), and one can
prove that this is a functor. The representation is denoted by ΩC, so that Hom (in
algebra) between ΩC and A is in bijection with Tw(C,A). Indeed ΩC is the tnsor
algebra of T (s−1C) along with a differential.



DERIVED SEMINAR 57

So Ω and B are adjoint to each other.

Theorem 24.1. (Lefévre–Hasegawa) these form a Quillen equivalence. This means
that they preserve the model category structure and moreover induce an equivalence
of categories on the homotopy level.

Secondly, all algebras are fibrant and all coalgebras are cofibrant. So A is cofi-
brant if and only if it is a retract of a cobar of something; C is fibrant if and only
if it is quasi-free.

The homotopy relation between two maps, f and g are morphisms between A and
A′ fibrant and cofibrant objects. Then f ∼ g if and only if there exists a homotopy
h ∶ A → A′ of degree −1 such that (some augmentation condition is satisfied) and
h ○ µA = µB ○ (f ⊗ h + h⊗ g) and f − g = dh + hd.

I didn’t say anything about the model category structure in coalgebras. In
coalgebras, the weak equivalences are those whose image Ω(f) is a weak equivalence
in algebras. The cofibrations are injections. The fibrations have the lifting property.

Let’s see how this result is related to A∞-algebras and minimal models. An A∞
algebra (maybe with augmented strict unit), as before, C is a coalgebra, cocomplete
(or conilpotent) and we want to consider all the k-linear maps from C to A. By
using the A∞ algebra structure, we can define an A∞ structure on Hom(C,A) as

bn(f1 ⊗⋯⊗ fn) = b
A
n ⊗ (f1 ⊗⋯⊗ fn) ○∆(n).

As before I want to define twisting cochains, as the set of morphisms τ satisfying
the Maurer–Cartan equation,

∑ bn(τ, . . . , τ) = 0

Now fix A. Whenever we choose a coalgebra C, we can assign a set Tw(C,A), and
one can prove that this is functorial and moreaever representable, by B∞A. Then
Tw(C,A) ≅ HomCog(C,B∞A). Practically, B∞A is T c(sA) with some differential.
Then actually, in fact, if you use V a graded vector space then there is a bijection
of sets between A∞ structures on V and differentials on the coalgebra structures
on T (sV ). Another fact, the hom sets, HomA∞

(A,A′) ≅HomCog(B∞A,B∞A′), so
B∞ as a functor from A∞ algebras to coalgebras is fully faithful.

Moreover, there’s a theorem

Theorem 24.2. (Lefèvre–Hasegawa) This functor B∞ is essentially surjective to
cofibrant-fibrant objects.

So any cofree coalgebra has some A∞ algebra with equivalent B∞.
Secondly, for each C there exists a minimal model and if A has Amin, then

B∞(Amin) is the minimal model of B∞(A).

So we have a diagram that I drew at the beginning.

Alg Alg∞

Cog Cogcf

B B∞Ω

fully faithful

I was supposed to say more but let me just give one more example. I mentioned
about the classification of fibrant and cofibrant objects. Actually in Alg, when A is
cofibrant then it must be free as a graded algebra but the converse is not true. So
say ∣1∣ = 1, then k⊕k1+⋯ and d(1) = 1⊗ 1. Then by using this you can show that
this has homology that vanishes except at the bottom, and so you have a trivial
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“cofibration” from the trivial algebra. Then it’s clear that k is fibrant cofibrant, so
that we should be able to invert the map up to homotopy. But we can’t.


