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1. Marie-Claude Arnaud

I want to work with certain kinds of maps. Let me give two classes: symplectic
twist maps of the two dimensional annulus and Tonelli Hamiltonians on T ∗M for
any closed M .

Let me start with f a twist map of the annulus, analytic and symplectic, T×R→
T × R, and if this is filled with invariant essential (continuous) loops. A question
of J. Mather is: are the loops analytic? We don’t even know that the loops are C1.

What is not related to this question? Consider the rigid pendulum, with Hamil-
tonian H(q, p) = 1

2p
2 + as2πq. Then you have an invariant curve that is not C1

but it’s not a counterexample because your loops are non-essential.
If f is C` and has a Ck foliation into Cr loops that are invariant with ` ≥ r ≥ k.

Then

(1) for all Γ in the foliation, we have that f |Γ is Cr conqugate to a Cr orien-
tation preserving diffeomorphism of T.

(2) We know things about these; they have rotation numbers. If rot(f |Γ) is
rational, then f |Γ is completely periodic and Γ is C`.

(3) If the rotation number is irrational and r ≥ 2 then f |Γ is C0-conjugate to
a rotation.

(4) If k ≥ 1 then there is aCk−1-symplectic diffeomorphism h such that h ◦ f ◦
h−1(q, p) = (q + z(p), p) with z : R→ R which is Ck−1.

In general if f is a smooth symplectic twist map that is C0-integrable, then we can
say

(1) If Γ is in the foliation and rot(f |Γ) is rational, then Γ is smooth and f |Γ is
C∞ conjugate to a rotation.

(2) there exist a dense Gδ subset of the foliation such that Γ in this subset is
C1. This is a 2009 result.

(3) There exists a dense invariant subset U of T × R with positive Lesbegue
measure such that for every invariant Γ, Γ is smooth and f |Γ is smoothly
conjugated to a Diophantine rotation.

[Some discussion about what a twist map is.]

Theorem 1.1. (Bialy, 1993) We know we can define symplectic coordinates for a
billiard map. If the billiard map is C0 integrable, then the billiard table is a standard
round disk and the billiard map is C∞ integrable.

1



2 GABRIEL C. DRUMMOND-COLE

There are cases where the one kind of integrability implies the other.
Now I will speak about Tonelli Hamiltonians on T ∗M . Maybe I will recall what

is a Tonelli Hamiltonian. Let H ∈ C2(T ∗M,R) with flow ϕHt . Then H is C0

integrable if there is an invariant foliation into C0 Lagrangian graphs, the image a
continuous closed 1-form on M .

Remark 1.1. Such an invariant is Lipschitz.

So saying it’s Lagrangian is just saying it’s differentiable Lebesgue everywhere
and then saying it is Lipschitz is saying the tangent space is Lagrangian.

Definition 1.1. We call H Ck, C` integrable (` > k) if it has an invariant Ck

foliation into C`-Lagrangian graphs. We say it’s Ck integrability if there exist D
Hamiltonians H1, . . . ,HD such that at every point DH1, . . . , DHD are independent
and H1, . . . ,HD commute in the Poisson sense (so that the flows commute) [ed: I
believe D is the dimension of M?]

The following are well-known:

(1) For k ≥ 2, Ck, Ck integrability implies Ck integrability.
(2) If H is Ck integrable then H1 = C1, . . . ,HD = CD are embedded La-

grangian tori and ϕHt |Γ is Ck−1-conjugated to a rotation flow.
(3) Because H is Tonelli, in this case, if H is Ck-integrable, then M is TD.

There is a remark. Because, well, this is called multidimensional Birkhoff theo-
rem, from 2010, which says that any invariant C1 manifold that is Hamiltonian-ly
isotopic to a Lagrangian graph is a graph. You can change the definition of Ck

integrability but they will actually be graphs. You can prove in fact that Ck, Ck

integrability is exactly Ck integrability if k ≥ 2. In the smooth or C2 case, you
know the whole dynamics. So my question is what happens for C0 integrability.

I have to mention some rigidity theorems. There are some cases where you know
that C0 integrability implies smooth integrability. If your Tonelli Hamiltonian is a
Riemannian metric, well, if a Riemannian C∞ metric on the torus is C0-integrable
then it is flat and C∞ integrable. In this case, C0-integrability implies smooth
integrability. The same year (1994), Heber proved that a Riemannian metric with
no conjugate point is C0-integrable.

With several collaborators, we proved the same results for Torelli Hamiltonians
with no conjugate points on T`.

Now let me give some results in the general case.

Theorem 1.2. If H is C0 integrable (assume it’s Tonelli) then

(1) There is a dense Gδ invariant subset of T ∗M that is filled by C1 invariant
graphs.

(2) If H is C3, The Lyapunov exponents of every invariant invariant [missed]
the metric and topological entropy is [missed]

Theorem 1.3. Let H be smooth and defined on the cotangent bundle of the torus of
dimension D. Say it’s C0 integrable. There is a dense invariant subset with positive
Lesbegue measure such that any invariant graph contained in it is smooth and the
dynamics is conjugate to a Diophantine rotation flow. From that there is a Gδ subset
of invariant graphs on which the dynamics are strictly ergodic. In fact we cannot
prove that it is a rational flow, but it is something, it has some common ponit.
It has a unique invariant Borel probability measure for this restriction supported
[missed].
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To prove these theorems, there are two steps, to prove a normal form and then
to apply a standard argument. To obtain a normal form, what we can do is apply
a result for Riemannian metrics. I will explain what are the tools for the first
theorem. Green bundles were introduced to prove in 1958 [some result]. They are
defined so that V (x) = KerDΠ(x) ⊂ Tx(T ∗M) with Π : T ∗M → M . We have
G+(x) as the limit under flow of DϕtV (ϕ−tx). With G−(x) you interchange ±t.
There are some properties. [List of properties]. The set where G− = G+ is Gδ and
they are continuous there. There is a dynomical criterion for belonging to G+ and
G−.

So what do you do. There is a dense subset of invariant C∞ graphs filled by
periodic orbits. These are in both G− and G+, you have a dense Gδ set, and by
standard arguments you get places where they are equal. Then you use another
result that I didn’t write down. After for the other result, you use the other facts
and another argument. I’ll stop here.

2. M. Mazzucchelli, On the Multiplicity of Isometry-Invariant
Geodesics

The celebrated closed geodesics conjecture says that every closed Riemannian
manifold of dimension greater than one has infinitely many closed geodesics. This
problem goes back to Poincaré and Hadamard and inspired Morse to develop Morse
theory.

The conjecture is a theorem in many cases, for many classes of smooth manifolds.
Let me mention the most relevant for my talk. So it is a theorem for non-simply
connected manifold as soon as the fundamental group is abelian and infinite. If
the fundamental group contains Z2 it’s an exercise, but Z plus a finite group it’s
already hard. This was due to Bamgert-Hingston. I mean for every Riemannian
metric on such a manifold. What about the simply connected case? The conjecture
is still true provided that the cohomology with rational coefficients has at least two
generators (as a ring). This was a celebrated result of Gromoll and Meyer in the
60s. After this, what’s left is all the manifolds that don’t satisfy this. Spheres,
projective spaces. The last, most relevant for our conjecture is due to Bungert-
Franks-Hingston, for S2.

Metric geodesics, I mean Riemannian metrics and geodesics, not Finsler. The
third result doesn’t hold in the same way in S2. Finding three closed geodesics
doesn’t work as well there.

If n is large, say, greater than five, we can’t even find a second geodesic. My talk
will not be about Hamiltonian dynamics but not about C0 topology at all. This is
the closed geodesics problem. What I’m going to do is study it using symmetry.

Let me give you the setting of the problem.
This goes back to Grove, who formulated it in the 70s. You have a Riemannian

manifold (M, g) and some symmetry, an isometry I. If you study closed geodesics
and have a symmetry, you’d like to study the image in the quotient. But that’s not
a manifold. So the interesting thing is to look for so-called I-invariant geodesics,
which are curves γ : R → M , immersed, such that they are invariant by I in the
strong sense. I(γ(t)) = γ(t+ τ) for all t ∈ R and τ is a positive constant. The fact
that the constant is nonzero is crucial. Every geodesic is invariant by the identity,
but in this sense the only identity-invariant geodesics are the closed ones.
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The problem I want to study is the multiplicity of these isometry-invariant
geodesics. Maybe there are always infinitely many. This turns out to be too op-
timistic. One can immediately find a counterexample. One of the first results of
Morse theory was the result that that every Riemannian manifold has at least one
closed geodesic. So here there are examples with no isometry invariant geodesics.
Take the torus T2 with the flat metric, the squares, and identify the edges pairwise.
Take the isometry that rotates the square ninety degrees. It’s easy to see that there
are no I-invariant geodesics. If you look closely at this example, what goes wrong
is that the isometry I is not homotopic to the identity.

We will see in a while that when an isometry is homotopic to the identity we
can always find one I-invariant geodesic. So the next conjecture is that when an
isometry is homotopic to the identity there are always infinitely many I-invariant
geodesics. This is also false.

Take the round sphere, and a rotation of the sphere. The only I-invariant geo-
desic is the equator. The situation is definitely different for closed geodesics. One
can formulate the problem for Finsler geodesics, but I’ll just discuss the Riemannian
case.

In view of these examples, we have the question, when is it true that there are
infinitely many? This question was raised by Grove, who also proved the first
theorem in this direction. This is not very hard to prove but somehow clever.

Theorem 2.1. If in this setting there exists a non-closed I-invariant geodesic γ
then see γ as a submanifold and take its closure. Then the closure contains infinitely
many other I-invariant geodesics. It’s not hard to prove that it contains at least one
other, and then a Baire category argument shows that there must be uncountably
many.

Before discussing this theorem further, let me tell you how we attack this con-
jecture.

2.1. Variational setting. The closed geodesics are the critical points of the en-
ergy, and we want to make a setup like that here.

The space of isometry-invariant curves Λ(M, I) = {γ : RW
1,2
loc → M |I(γ(t)) =

γ(t+ 1)} (reparameterized so that τ = 1).
The energy of γ is

E(γ) =

∫ 1

0

g(γ, γ)dt

The critical points of E, integrating from 0 to 1 is the same as integrating from t
to t+ 1 so the critical points are exactly the I-invariant geodesics.

Now R acts on Λ by reparameterization. (τ · γ)(t) = γ(t+ τ).
This function is invariant by the action of R. Whenever you find a critical point,

you have a full line of critical points, that’s not a big deal. The orbit will be denoted
R · γ. Either γ is a nonperiodic curve in which case you get R embedded in your
manifold. Otherwise you get S1. So Grove’s theorem tell us that the only case
we have to keep in mind is the S1 case because in the other case we already have
infinitely many. The isometry maps γ0 to γ1. and then comes back to γ0 with
period at least 1.

Here’s a warning, here’s the main issue. Every time you have such a γ, it comes
with infinitely many critical orbits of the energy. Why is this the case? The reason
is, let me give you notation. Let me say that γτ (t) = γ(τt). Then γnp+1, in period
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1, winds around itself n times and then joins γ0 and γ1. This is a different point of
our space. If we detect critical points, we want to identify all critical points of this
form. We want distinct geometric objects.

As in the closed geodesics problem, the question becomes, what are the proper-
ties of the sequence of critical points coming from one of these geodesics. This was
addressed by Grove and his student Tanaka. Even though this seems very different,
the properties are the same as in the closed geodesics problem. There one studied
the behavior of the index of the energy. Iterating is taking γmp+1 and seeing its in-
dex as a function of m. This was first studied by Bott in the case of closed geodesics.
The result is that it grows linearly. This would be enough to prove theorems about
the multiplicity of closed geodesics for generic Riemannian metrics. I’m interested
in the non-generic setting. Then the critical points may be degenerate. The Hessian
can have a kernel. You study along with the index the nullity of the critical point,
the nullity of the Hessian. He found that the nullity is bounded uniformly. There’s
a third index that describes degenerate critical points (these are very complicated
and hard to classify) so another index is the local homology of γmp+1, the rank of
that local homology. I don’t want to give you the definition but you should have
in mind that it’s the homology you need to attache to the domain when you pass
the critical point. For non-degenerate ones, you attach a handle, and you get the
homology of the handle. For degenerate critical points you get more complicated
things.

Right away they found the corollary on isometry invariant geodesics.

Corollary 2.1. Suppose M is simply connected, H(M) has more than one gener-
ator as a ring, and I is homotopic to the identity (not via isometries). Then there
are infinitely many I-invariant geodesics.

The third condition tells you that the space of isometry invariant curves is ho-
motopy equivalent to the loop space. This is an exercise. What is not trivial is
that the second condition, due to [unintelligible] and Sullivan, is equivalent to the
fact that the Betti numbers of the loop space are unbounded. Therefore the Betti
numbers of the domain of our energy are unbounded. Each point in the sequence
gives a bounded contribution to the homology, so that’s roughly the proof.

I want to come to my contribution. I studied the non-simply connected case. On
the Riemannian manifolds whose fundamental groups contain Z2, it’s an exercise to
find the infinitely many I-invariant geodesics. So the problem becomes hard when
you don’t have that.

Theorem 2.2. There are infinitely many I-invariant geodesics if one of the fol-
lowing is true:

(1) I ∼= id and M = M1 ×M2, with dimM2 ≥ 2 and rk(H1(M1)) 6= 0
(2) I ∼= id and π1(M) is Abelian and contains [is?] Z and another nontrivial

group. The hard case is when H is finite. The conjecture is that I expect
that H trivial will be fine as well.

Instead of discussing the proof, I’ll discuss a generalization to the contact setting.
Are there questions on the statements?
The geodesic flow can be realized as a Reeb flow on the unit cotangent bundle

and isometries can be lifted too. So it’s natural to restate this in the contact setting
in terms of invariant Reeb orbits.
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Take a contact manifold Y 2d+1, d ≥ 1 with a contact form α. I’m sure everyone
here knows the definition: α∧(dα)d 6= 0, you get a volume form this way. You have
Reeb dynamics from the Reeb vector field R which is defined by means of α(R) = 1
and (R, dα) = 0.

There is a conjecture due to Weinstein, let me call ρt the Reeb flow (along this
vector field), that ρt has closed Reeb orbits. There are some cases where this is
known. Very often there are several closed Reeb orbits.

The generalization would be the generalization in terms of symmetry. So there
should be a contactomorphism, and more, we should have φ∗α = α. It’s easy to
see that ρt ◦ φ will tequal φ ◦ ρt in this case. So we should study Reeb orbits that
close up in the quotient.

Definition 2.1. The curve γ : R → Y is a φ-invariant Reeb orbit if it is a Reeb
orbit (γ(t) = ρt(γ(0))) and φ(γ(t)) = γ(t+ τ) for all t ∈ R for some constant τ .

There are contact manifolds with no Reeb orbits. Let’s say a manifold has a
contactomorphism isotopic to the identity. Then this lifts to the cotangent bundle.

Conjecture 2.1. ρt should have at least one φ-invariant Reeb orbit provided φ is
contact isotopic (via contactomorphisms) to the identity. I guess this is a good time
to stop. Thank you.

3. Topological contact dynamics and its applications

It’s great to be back at POSTECH. Let me start with some references. Every-
thing is contained in a series of three papers, altogether about 100 pages, Topolog-
ical Contact Dynamics I, II, and III. This is all joint work with Peter Spaeth. I’ll
have to pick and choose. I have to pick some notation. Let H be a time dependent
function H : [0, 1]×M → R, not necessarily smooth. I’ll be specific if I remember
about when it is smooth. Then Φ will be an isotopy φt for 0 ≤ t ≤ 1, φt : M →M .
We will have φt either a diffeomorphism or a homeomorphism. If it’s smooth then
such Φ are in one to one correspondence with time dependent vector fields (this is
an ODE with initial condition).

Okay, let me recall some smooth dynamics. We either have Hamiltonian dy-
namics or Hamiltonian and contact or contact dynamics. Let me make a table.

Hamiltonian Hamiltonian and contact contact
(M2n, ω) symplectic, ωn 6= 0 (M, ξ = kerα) contact (cooriented): α ∧ (dα)n−1 6= 0

ω(Xt
H , ) = dHt dα(Xt

H , ) = (RαH)α− dHt and α(Xt
H) = Ht

So we have a function giving us a vector field. We want to look at coordinate trans-
formations which in the symplectic world is pulling back the symplectic form and
pulling back the contact form, which may not be preserved (although its kernel is)

We have a one to one correspondence between H and ΦH if we apply some
normalization. In the symplectic case we choose mean value zero with respect to
ωn and in the other side we have a choice of α but not mean value zero because
constant functions correspond to nontrivial isotopies.

Everything depends on the choice of normalization. Many things turn out though
to be independent of α. The precise dependence on α or independence of it, in
topological contact dynamics is the same as in the smooth case.

There is a transformation law when I pull back an isotopy, it tells me what the
corresponding function is. I’ll come back to that more precisely.
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Let’s get to definitions, comparing this to topological Hamiltonian dynamics. I
want to write that once and only once, I’ll say THD henceforth. There are a lot
of things this has in common with topological contact dynamics (TCD). The left
part is joint with Yong-geun Oh. The right column is joint with Peter. You have
a sequence of objects ΦH , H which limit in some sense (via Cauchy sequences) to
Φ, H. In the TCD world, I’ll talk about what we have in a little bit.

Let’s start with these functions. Assume these functions converge to some H

which might not be smooth, in the sense ||Hi−H|| → 0, where ||H|| =
∫ 1

0
osc(Ht)dt,

the average oscillation. On the TCD side you have a correction term, ||H|| =∫ 1

0
(osc(Ht) + |mv(Ht)|)dt where the new term corresponds to the “Reeb direction”

which is the constant functions. The integrand is equivalent to the norm, max(Ht).
If you look at prequantization bundles, the relation of these two norms is apparent.
This makes it make sense not to look at the max. This is not smooth. It’s continuous
for almost every value of [missed].

For the isotopies there’s not much to say. We just look at uniform convergence
or C0 convergence. It won’t really matter. The limiting object is an isotopy but
phit is just a homeomorphism, continuous in t.

So what do you get on the TCD side for the coordinate transformations, I get
[missed], what do the conformal factors gi and hi go to? If you look at this for the
symplectic form, you get constant functions which are zero on a compact manifold.
In the contact world they matter a lot.

Let’s take a look at the transformation law, [can’t read the board]. There are
constant functions, so if Hi = 1 for all i, then we get e−gi , the Hamiltonian of
φ−1
i ΦHi

φi. I want the conjugate to also be a Hamiltonian system, so I need gi to
converge uniformly to some g. To get a theory with coordinate transformations.
After coordinate change it’s still Cauchy. It’s quite similar. It’s actually very similar
for the group structure. We need the hi to converge to some h uniformly.

[missed some.]

4. Morimichi Kawasaki: Superheavy Lagrangian immersion in 2-torus

Thanks to the organizers for giving me this opportunity. Today’s topic is the
following. First, notation, then review, and then results and then proof. Let’s start.

4.1. Notation. Today we consider (M,ω) a closed, symplectic manifold and if H ∈
C∞(M), we define the Hamiltonian vector field XH hich is defind by ω(XH , V ) =
dH(V ) for all V . If H ∈ C∞(M × [0, 1]) then there is a Hamiltonian flow φtH where

φ0
H = id and

dφt
H

dt = XHt . Then we can define Ham(M,ω) to be diffeomorphisms

such that there is an H such that h = φ1
H . We can define Symp(M,ω) to be

diffeomorphisms such that h∗ω = ω.
Now QH∗(M,ω) is quantum homology of (M,ω) with coefficients in C. Then

c(a, F ) are spectral invariants a ∈ QH∗(M,ω) and F ∈ C∞(M). I’ll omit the
definition. It’s R-valued.

4.2. Review. Assume that a ∈ QH∗(M,ω) and a ∗ a = a, where this is the
quantum product. We have ζa, the functional C∞(M) → R given by ζa(H) =

lim`→∞
c(a,`H)

` . Now define for X closed in M and a as above that X is a-heavy if
ζa(H) ≥ infXH. We say X is a-superheavy if ζa(H) ≤ supXH.
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Theorem 4.1. If X is a-heavy then X is non-displaceable by Hamiltonian diffeo-
morphisms. That is, there is no φ ∈ Ham(M,ω) such that X ∩ φ(X) is empty.

If X is [M ]-superheavy then it is non-displaceable by symplectomorphisms. If X
is superheavy then X is heavy.

There are two easy examples. Example one is the two-sphere. This has the
standard form ω0. Let h be the height h(x, y, z) = z. Then let Cε = h−1(ε). Then
Cε is [S2]-superheavy, so non-displaceable by symplectomorphisms (if ε = 0). If ε
is non-zero then it’s displaceable by Symp = Ham so it’s not [S2]-heavy.

Another example is the two torus with form dp ∧ dq. So here M = {p = 0} and
L = {q = 0}. Then M,L are [T 2]-heavy so non-displaceable by Ham. But they’re
displaceable by symplectomorphisms, so they’re not [T 2]-heavy.

4.3. Results. Our main result is the following:

Corollary 4.1. M ∪ L is [T 2]-superheavy. This is non-displaceable by symplecto-
morphisms.

This is a trivial result, since M ∪L is non-displaceable by homeomorphism. We
can obtain non-trivial results. To obtain non-trivial results, we use the following
theorem. For i = 1, 2, (Mi, ωi) closed and symplectic, if Xi is ai-superheavy in
(Mi, ωi), then X1 ×X2 is a1 ⊗ a2-superheavy in M1 ×M2.

Corollary 4.2. (M ∪L)×C0 in T 2 × S2 is [T 2 × S2]-superheavy. So M ∪L×C0

is non-displaceable by symplectomorphisms.

This is a non-trivial result.

Definition 4.1. An open subset U of M is a-null (let a = a ∗ a) if ζa(H) = 0 for
all H compactly supported on U . We say U is strongly a-null if ζa(F +G) = ζa(G)
if F is compactly supported on U and G is any function such that {F,G} = 0.
Strongly a-null implies a-null by using G = 0. So X is strongly a-null if there is a
U containing X which is strongly a-null.

Remark 4.1. If X is displaceable by Hamiltonian diffeomorphism, then X is
strongly a-null.

Theorem 4.2. Let Fi, . . . , Fk be C∞ functions on M which Poisson commute. Let
Φ be a function F1, . . . , Fk : M → Rk. Fix f0. Assume for all y 6= y0 that Φ−1(y)
is strongly a-null. Then Φ−1(y0) is a-superheavy. This is called the stem.

Our theorem is that any open subset of T 2\(M ∪ L) is strongly [T 2]-null. We
can prove, then, our corollary.

The proof of our theorem (which as stated is a very special case) is as follows.
Let Φ be F : T 2 → R with Φ−1(0) = M ∪L. Then for all ε 6= 0, Φ−1(ε) is [T 2]-null.

Then Φ−1(0) is [T 2]-superheavy.

Theorem 4.3. Let (M,ω) be a rational closed symplectic manifold. and H ∈
C∞(M × [0, 1]). For α 6= 0 in [S1,M ], assume that Φ1

H |U is the identity, that for
all x in U , t 7→ φtH(X) is α, and α /∈ [S1, U ]. Then U is a-null for any a. This
comes from Irie’s result on Hofer-Zehrder capacity. Thank you for your attention.
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5. Sobhan Seyfaddini: The displaced disks problem via symplectic
topology

I’d like to begin by thanking the organizers. It’s been a great pleasure and
I’m very happy to be speaking. I’ll be speaking mainly about the two-sphere S2

which will be equipped with a volume form ω. Area preserving diffeomorphisms are
symplectomorphisms, and since S2 is special, these are all Hamiltonian. I’ll let H
be area and orientation preserving homeomorphisms of S2. A simple consequence of
what I’ve said is that every area preserving homeomorphism can be approximated
by Hamiltonians, so it’s the closure of Ham(S2) in the C0 setting.

The displaced disks question was posed by Beguin, Crovisier, and Le Roux. Take
a to be a positive number and Ha be the set of θ in H that displaces a disk of area
a. This means there exists a disk Da of area a so that θ(Da) ∩Da = ∅.

Question: Is Id in the closure of Ha? Can you have arbitrarily small morphisms
that displace a disk of area a?

The answer is no. The identity is not in here. If you want to displace a disk of
some area, you need some C0 norm. The goal of the talk is to sketch a proof.

Let me show you a nice corollary first. Consider the conjugacy class of an area
preserving homeomorphism C(θ). The corollary is that C(θ) is never C0-dense in
H. If θ is not the identity, then θ ∈ Ha and then so is its conjugacy class.

This was the original reason for posing this question.
Now a few remarks. Neither of the above is true if you drop the area-preserving

requirement. If you consider just homeomorphisms, these aren’t true. It’s not hard
to see that a non-area preserving homeomorphism can displace a disk of large area.
Take a spiral that fills up the disk. Then take a map that pushes the spiral into the
space between it. You can in fact have a homeomorphism of S2 whose conjugacy
class is dense in all homeomorphisms is H2.

You might ask about surfaces other than S2. Then an appropriate version holds
for homeomorphisms in the C0-closure of Ham, vanishing flux, but not for general
homeomorphisms that are area preserving. You can look at a torus. The corollary
holds for all homeomorphisms. The flux homeomorphism is [missed]. The real
question is about what happens in the kernel of the flux. Can something in the
kernel have conjugacy dense in the kernel. The answer is no, and I think while my
methods answer this, it was already known by other means.

Questions? Here then is the proof of theorem one. It uses spectral distance.
Viterbo Schwarz and Oh showed there was a γ-norm Ham(M) → R. This is true
for M a closed manifold. Here γ has the following properties.

(1) φ ∈ Ham(M) and φ(Br) ∩Br = ∅, then γ(φ) ≥ πr2.
(2) γ(id) = 0 (it’s also a norm but I don’t need the rest of that)

Step two of the proof. Here, this is what I did. If M is a surface, a closed surface,
then γ is C0-continuous.

Putting these two together solves the problem. I’ll spell it out but it’s easy to see
at this point. Suppose you have a sequence of area preserving maps which displace
disks of area a and which converge to the identity. Without loss of generality, we
assume they are smooth. Then the first fact implies that γ(θi) ≥ a and the second
that γ(θi) converges to zero.
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I’ll spend the rest of the talk saying what γ is and proving that it is continuous in
the case of a surface. The formula that was proposed in some talks in the summer,
computing it can be very difficult, and a formula was proposed.

So spectral numbers and γ.
Let Ω = {(z, u)} where z is a loop in M , contractible, and u is a contracting

disk for z. Then for H ∈ C∞([0, 1] ×M) we get AH : Ω → R given by (z, u) 7→∫
Ht(zt)dt−

∫
u
ω. Now Crit(AH) consists of 1-periodic orbits of φtH and Spec(H)

consists of critical values of AH.

Theorem 5.1. There exists a function c : C∞([0, 1]×M)→ R with the following
properties.

(1) c(H) ∈ spec(H)
(2) |c(H)− c(G)| ≤ ||H − G||∞
(3) triangle inequality. For G and H, define H#G as H

Hh(t, γ) +G(tφtH)−1(γ). Flow along this is the composition of flow. Then
c(H#G) ≤ c(H)#c(G).

Definition 5.1. Say you have a Hamiltonian diffeomorphism ψ. Then γ(ψ) is
infc(H) + c(H̄) where this ranges over all Hamiltonians with φ1

H = ψ.

Now γ is a norm. Seeing that γ(ψ) ≥ 0 is easy, since c(H)+c(H̄) ≥ c(H#H̄) = 0.
Seeing that it is invariant under inverses, satisfie the triangle inequality, and is
nondegenerate aren’t much harder.

Say you have a sequence that converges to the identity, do the spectral numbers
converge to zero. You need to normalize, and with the standard normalization it’s
not continuous.

Now M is any closed symplectic manifold. Supposed B is an open ball in M ,
fixed. Say Hi and H vanish on B and the flow of Hi converges to the flow of H.
Then c(Hi) converges to c(H). A remark is that if you remove the assumption that
Hi|B = 0, then the theorem is not true. This restriction is a big restriction. It’s still
another step to show that it’s continuous on S2. I’ll come back to this statement if
I have time. I’ll call this theorem two.

Now I’ll show that γ is C0 continuous on Ham(S2).
I’ll show that if φ is C0-close to the identity then γ(φ) is small.
Pick two disks covering S2. I apply a C0-fragmentation theorem by Entov

Polterovich and Py that says there exist two diffeomorphisms, Hamiltonian dif-
feomorphisms, such that

(1) The support of ψi is in the disk Di

(2) ψ1 ◦ ψ2 = φ, and
(3) ψI is C0-close to the identity.

To apply the previous theorem, I need an entire path that is C0-close to the identity.
Here’s a small lemma. There exist two Hamiltonians Fi supported in Di so that

the time one map of Fi is ψi and secondly the C0 distance from Id to φtFi
is less

than the distance to ψi. You apply the Alexander isotopy and do a small trick.
So I’ll show that γ(φ) is small. So φ is φ1

F1
◦ φ1

F2
and γ(φ) by the triangle

inequality is smaller than γ(φ1
F1

) + γ(φ1
F2

) and this is smaller than or equal to

c(F1) + c(F2) + c(F̄1) + c(F̄2) and these are small by theorem two.
Now I will prove the theorem two. Assume that ω|π2

= 0. I’ll show that,
supposing H|B = 0, and φtH is C0 close to the identity. Then I’ll show that |c(H)|
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is small. You’ll see that all I need is that φ1
H is close to the identity (this is because

ω|π2
= 0).

Pick a Morse function f on M which is C2-small and so that all critical points
are in B. Then we know there exists an ε > 0 such that the distance between x
and φ1

t (x) ≥ ε for all x outside the ball B.
If dC0(Id, φ1

H) < ε, I’ll show that c(H) is smaller than ε.
Let’s consider φ1

H and φ1
f . I claim that φ1

H ◦ φ1
f has the same fixed points as

φ1
f . Clearly the containment of the fixed points of φ1

f is clear. So in the support
of H, you move at least ε and then it can’t be moved back. These two have the
same fixed points. Then you can check that the spectra of H#f is the same and
the spectrum of f . Then c(H#f) is in the values, in spec(f). Using ω|π2 = 0 you
get that this is just critical values of f . So c(H#f)| ≤ ||f ||∞. On the other hand,
|c(H#f)− c(H)| ≤ ||f ||∞ so |c(H)| ≤ 2||f ||∞.

Thank you.


