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1. September 16, Deformation theory

Thank you for the opportunity to speak and visit, it’s my first time in Pohang.
This is the first of three lectures. These lectures will move from very general to
very specific.

Today we’ll discuss deformation theory. In fact, I’ll spend half of this lecture
reminding the classical deformation theory to people who don’t know it and then I’ll
present an enhancement that has to do with trying to answer the following question.
Take X to be a topological space and ρ a representation of the fundamental group
of X, rank n, ρ ∶ π1(X)→ GL(n,C), and the question that we try to answer is the
following. Describe all infinitesimal deformations of ρ. I don’t mean just first order.
I mean any order but locally, very close to 1. But I want this with cohomological
constraints. Fix i and k, and then I want, when you look at the rank n local system
Lρ attached to ρ, a locally constant sheaf, and it has cohomology Hi(X,Lρ). We
want that the rank of this C-vector space is ≥ k. This is the typical question that
we’re interested in.

Let me rephrase this. More geometrically, take X a topological space with some
finiteness built into it, it’s the same homotopy type as a finite CW complex, andM
is the moduli space of all these rank n representations, Homgp(π1(X),GL(n,C)),
the moduli space of rank n representations of π1. This is finitely presented, so this
is an affine scheme given by some polynomial equations of finite type over C. All
this means is you can write down this space in a big affine space as the zero locus
of some polynomial equation. This can have multiple components, there are no
reduced points.

Just to mention, the difference between this and local systems is that you have
to mod out by conjugation, I’ll try to sweep this under the rug, you’ll see why later.

So inside this scheme we are looking at Vi
k, the substrata of representations with

dimHi(X,Lρ) ≥ k. This is an affine closed subscheme of the moduli space and the
quetsion is to describe locally the cohomology jump loci. You want to see the local
behavior. You’d like to see the global behavior as well, but one question is the local
question, about the formal scheme / analytic germ at ρ, Vi

k,(ρ) ⊂M(ρ).

The classical deformation theory is about the bigger space here and I’m interested
in enhancing to get to the smaller space.

Let me give an example theorem

Theorem 1.1. (Esnault–Schechtman–Viekweg) Take X to be the complement of
a hyperplane arrangement (so very special) and look at rank one representations,
n = 1, which is the same as local systems, there’s no conjugation to mod out by.
Look at ρ = 1, the trivial rank one local system.
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In this case, they were able to describe the cohomology jump loci, the reduced
structure (Vi

k,(1))
red as (Ri

k,(0))
red, and I’ll give you this set theoretically although

you can make it a scheme,

Ri
k = {ω ∈H1(X,C)∣dimHi(H●(X,C), ω∪) ≥ k}

The idea is that describing this in terms of the cup product is much easier than
describing things in terms of the moduli space. You can describe as cochains on a
universal cover with twisted differentials, but that’s very hard to compute.

More generally, ifM is a moduli space of objects with some cohomology theory,
then you can always define the cohomology jump loci Vi

k, then we fix terminology
by deformation theory we mean M(ρ), you want to understand the space locally at
this object ρ. With deformation theory with cohomological constraints I mean you
want to look at the local behavior Vi

k,(ρ) instead.

It’s well-known how to handle the deformation theory, with Deligne’s principle,
and we’ll use a newer enhanced principle, my joint work with Botong Wang for
cohomological constraints.

The next part of the lecture is to remind you about Deligne’s principle, and then
I’ll talk about the new principle.

Deligne’s principle, around 1986, in a letter to J. Millson, says the following.
“Every deformation problem over a field of characteristic zero is controlled by a
differential graded Lie algebra with equivalent Lie algebras giving the same defor-
mation theory.”

I have to explain what this means. I’ll give the formal definition of a differential
graded Lie algebra. What is a differential graded Lie algebra? We’ll stick with the
complex numbers here. This consists of the following data:

(1) a graded complex vector space C∗ =⊕i∈NC
i

(2) a Lie bracket, that is, a bilinear graded skew commutative pairing, so that
for α ∈ Ci, β ∈ Cj , and γ ∈ Ck, we have [α,β] + (−1)ij[β,α] = 0, it satisfies
a graded version of the Jacobi identity

(−1)ki[α, [β, γ]] + (−1)ij[β[γ,α]] + (−1)jk[γ, [α,β]] = 0

(3) a family of linear maps di ∶ Ci → Ci+1 which forms a differential, di+1di = 0,
so C is a complex of vector spaces, and satisfies the Leibniz rule

d[α,β] = [dα,β] + (−1)i[α, dβ]

So that’s a differential graded Lie algebra. There are morphisms that you have to
define that keep the structure. A homomorphism of differential graded Lie algebras
is a linear map preserving grading, brackets, and differentials.

Some more terminology. A differential graded Lie algebra (so I’m trying to
build up to the principle here, we need a little more) morphism g ∶ C → D is
a 1-equivalence if it induces an isomorphism on cohomology (with respect to the
differential) up to degree 1 and a monomorphism on degree 2. Of course you can
define an i-equivalence. But it turns out that for the deformation theory this
is enough. Let me note that if (C,d) is a differential graded Lie algebra, then
(H∗C,d = 0) inherits a Lie bracket and becomes a differential graded Lie algebra
itself with induced bracket. This can be checked easily.

We say that two differential-graded Lie algebras have the same 1-homotopy type
if they are connected by a zig-zag of 1-equivalences.
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So let me explain the meaning of “controlled” in this principle now. We have
our moduli space and our object there, we have to change the point of view, view
M(ρ) as a functor. Let me try to give some geometric intuition [picture]. SoM(ρ)
is a functor from ART, local Artinian C-algebras of finite type to SET, sets, taking
A to HomC−schemes(SpecA,M(ρ)) =HomC−alg(ÔM(ρ) ,A).

This functorial approach has an advantage because moduli spaces might not
exist, but you can always ask about what deformations are.

To say that this deformation problem M(ρ) is controlled by the differential
graded Lie algebra (C,d) if as functorsM(ρ) is equivalent to the canonical defor-
mation functor Def(C,d), which takes A a local Artinian algebra to the so-called
Maurer–Cartan elements up to gauge. Let me give a slightly more intutive descrip-
tion. Let me give a set theoretical equality (that has to be made sense of).

Def(C,d)(A) = {omega ∈ C1 ⊗C mA∣dω +
1

2
[ω,ω] = 0}/C0 ⊗mA.

This is not literally true, you have to make this categorical, but this is the idea.
That’s what it means for a differential graded Lie algebra to control a deformation

problem.
In practice the differential graded Lie algebra you build first is infinite dimen-

sional. What you can do is for example in some nice cases, replace this differential
graded Lie algebra with its cohomology, this typically is finite dimensional, there’s
no differential, so this last part is absolutely fundamental which is why this next
theorem is called

Theorem 1.2. (The fundamental theorem of deformation theory) (Deligne, Goldman–
Millson, Schlessinger–Stasheff) The deformation functor Def(C) depends only on
the 1-homotopy type of C.

More precisely, if you have two differential graded Lie algebras connected by a
1-equivalence, there’s an induced map which is an isomorphism of functors between
the deformation sets.

The nicest case you can stumble on is the case when C is 1-formal, where C is
1-homotopy equivalent with its cohomology differential graded Lie algebra with no
differential. Then one can replace Def(C) with Def(H∗C). One gets just alge-
braic equations, not only algebraic but quadratic, for the Maurer–Cartan element.
Usually the cohomology is finite dimensional.

That’s a principle, it has to be illustrated. That’s what Goldman–Millson had
done. Let me illustrate this principle.

We’ll keep two examples running in this talk. The first is about representations
of π1.

Theorem 1.3. (Goldman–Millson, Simpson) Let X be a compact Kähler manifold
and R(X,n) the moduli space of representations of π1 of rank n, and we’ll take
ρ in that space of representations. If ρ is semisimple (which doesn’t mean that
nearby representations are semisimple) then R(X,n)(ρ) are described by some linear
algebra, there’s a space Q(ρ), the quadratic cone and the space of representations
is Q(ρ)(0).

Let me describe the quadratic cone set theoretically, it’s

{η ∈ “H1(X,End(Rρ))′′∣η ∧ η = 0 ∈H2(X)}
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which is almost right but you need to look instead at group cocycles

{η ∈ “Z1(π1(X), gl(n,C)adρ)′′∣η ∧ η = 0 ∈H2(X)}.
It’s still manageable, it’s a vector space. In particular, this has quadratic singular-
ities.

How does the proof go? All one needs to do is provide the differential graded
Lie algebra governing this. This is the de Rham complex with coefficients in End,
well, almost.

R(X,n)(ρ)“ =′′ Def(A●DR(X,End(Lρ)), d)
up to issues of augmentation.

The assumption that ρ is semisimple implies by Simpson’s theorem that this
differential graded Lie algebra is formal. But for deformation functors you only
need C1 and C2 at most. This is in fact ∞-formal so you can replace it with its
cohomology and zero differential, in which case, again, you’re left just with the
quadratic equations.

You’ll see because of this amazing principle the setup will be different but the
end result will be similar.

Look at holomorphic vector bundles.

Theorem 1.4. (Goldman–Millson, Nadel) Let X be a compact Kähler manifold
andM(X,n) is the moduli space of stable rank n vector bundles on X with vanish-
ing total Chern class. I’ll take one such vector bundle. Then the statement is that
the deformations of this again are described by some linear algebra,

M(X,n)(E) ≅ Q(E)(0)
for a quadratic cone Q with a similar description:

Q(E) = {η ∈H1(X,End(E))∣η ∧ η = 0 ∈H2}.

The proof again involves displaying the Lie algebra governing this problem, which
is the Dolbeaut Lie algebra (A0,∗

Dol(X,End(E)), ∂̄). This is formal because of the
assumptions we made. Because it’s formal, you can replace it with its cohomology
d = 0.

Let me make a remark, you may know this, if X is a smooth projective vari-
ety, then Simpson has constructed a few moduli spaces. The Betti moduli space
Mβ(X,n) is the irreducible local systems of rank n, which doesn’t need a smooth
projective variety. But the other two, you can look at the de Rham moduli space
MDR(X,n), stable vector bundles with flat connection ∇ ∶ E → Ω1

X ⊗E, and then
the Dolbeaut version of thisMDol(X,n) which is the space of stable Higgs bundles
with c = 0, where a Higgs bundle [missed some]

Analytically the first two are the same. There’s formality hidden here. One can
describe locally, these things have quadratic singularities, the Betti moduli space
is the one I put down in the example. You also know the same thing for the de
Rham moduli space. In the third case the Lie algebra is the Higgs complex, using
∂̄ +End(θ) instead of d.

There are many other formality statements in the literature. This was a principle,
by now it’s a theorem. The hard part is writing down the axiomitization. This was
done by [unintelligible]and [unintelligible]in derived algebraic geometry. This might
not quite coincide with the classical notion.

This also needs very little information from the differential graded Lie algebra.
The rest of the Lie algebra has to know about the derived algebraic geometry.
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But we’ll see how the cohomological jump loci knows about this without passing to
derived algebraic geometry, just staying with classical stratified algebraic geometry.

So let me go now to the new principle, dealing with cohomology jump loci.
Before I state the new principle, let me note that if you look at the space of rank
one representation R(X,1), this is Hom(π1(X),C∗), and you can replace π1 with

H1(X,Z), the Abelianization, and so this is just (C∗)b1(X) ×G for a finite Abelian
group G, since there could be torsion in H1. All the story is trivial in this case.
But Vi

k in R(X,1) could be nontrivial.
So we’re addressing a different problem which could be nontrivial in this simple

case.
The new principle is the following:
“Every deformation problem (over a field of characteristic zero) with cohomology

constraints is governed by a pair (C,M) of a differential graded Lie algebra C with
a differential graded Lie module M over C with equivalent pairs giving the same
deformation theory with cohomological constraints.”

So (M,dM) is a differential graded Lie module over the differential graded Lie
algebra (C,dC), which is the data

(1) a graded vector space M = ⊕i∈NM with a bilinear pairing C ×M → M
written (a, ξ)↦ aξ, satisfying some conditions:

Ci ×M j →M i+j

for α ∈ Ci, β ∈ Cj , ξ ∈M,

[α,β]ξ = α(βξ) − (−1)ijβ(αξ)

(2) a family of linear maps diM ∶M i →M i+1 with di+1M diM = 0 and the Leibniz
rule

dM(aξ) = dC(α)ξ + (−1)iα(dMξ).
That’s the formal definition.

Let me define a homomorphism between differential graded Lie modules over
(C,dC). Such a homomorphism f ∶ (M,dM) → (N,dN) is a linear graded compat-
ible with the differentials and the multiplication from C.

The equivalence that we’re looking for in the statement is as follows. Well,
first, as before, (C,M) will be called a DGLA pair and the cohomology with zero
differentials ((H∗C,0), (H∗M,0)) inherits the structure of a DGLA pair.

A map of pairs g ∶ (C,M) → (D,N) is a the data of a differential graded Lie
algebra homomorphism g1 ∶ C → D, and a linear map g2 ∶ M → N which is a
C-module map via the C-module structure given by g1. I could make this more
precise but I’ll just keep it like this.

Such a map is a q-equivalence if g1 is 1-equivalent and g2 is q-equivalent. Then
you can define the q-homotopy type of a pair and q-formality of a pair.

Let’s go over what it means to govern a deformation problem. For any differential
graded Lie algebra you had this functor Def(C) ∶ ART → SET given by Maurer–
Cartan elements up to gauge. We define a subfunctor Def i

k(C1M) which takes
(C,M) to

{ω ∈ C1 ⊗mA∣dCω +
1

2
[ω,ω] = 0;J i

k(M ⊗C A,dM ⊗ id + ω∧) = 0}/C0 ⊗A

Here J i
k is the cohomological jump ideal which I’ll define (on any complex) shortly.
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What is controlling the deformation problem? You have M(ρ) and this is
the same as the deformation functor given by Def(C). Then with in this you
have Vi

k,(ρ)), so this usbset in Def(C) acts on something, this is M , and this is

Defik(C,M). That’s the solution that we propose.
The cohomology jump ideal is the crucial tool. Let me introduce those in a more

general context. Let me recall a more classical statement you’re all familiar with in
algebra. If M is a finitely generated R-module and R is a commutative ring, take
a free presentation F −1 → F 0 →M → 0

Theorem 1.5. (Alexander, Fitting) The ideal I given by minors of seize k in R,
such that Irk(F 0)−k(d), depends only on M and k.

These are the so-called Fitting ideals of the module. They give subschemes,
strata. The generalization I’ll need is

Theorem 1.6. Let M be a bounded above complex of R-modules, and right now
our theorem is just for R Noetherian with M having finitely generated cohomology.
Take a free resolution of this F ● →M● where is a bounded above complex of free R-
modules of finite rank. These always exist, and this is not necessarily well-known.
Then

(1) the J i
k(M●) = Irk(F i)−k+1(di−1F ⊕ diF ) depends only on M, i, k. This gives

the Fitting ideal as J 0
k−1(M). Let me tell you more some properties, why

this deserves the name cohomology jump ideals.
(2) The second part is, it depends only on the class of M in the derived category.

If M and N are quasi-isomorphic then they have the same cohomology jump
ideals.

(3) If M is a complex as above of flat R-modules, and if S is an R-algebra
(also Noetherian), then you can change the base as expected, J i

k(M) ⋅ S =
J i
k(M ⊗R S).

(4) As before, if S = R/m, then J i
k(M) ⊂ m if and only if dimR/mHi(M● ⊗R

R/m) ≥ k.

This is easy. It all comes down to computing the dimension of the complex. How
do you compute the dimension of the cohomology, the dimension? This dimension
is dimkerdi − dim imdi−1. Then this is ri − dim imdi − dim imdi−1, and then to
compute the ranks, you take minors of the appropriate size.

Back to the condition, you have J i
k(M ⊗A,dM +ω), which is 0 in A, what does

this mean? This means that Spec(A), we know it maps to M(ρ), and what do
you want? The cohomology jump loci contains this little curve, the map factors
through Vi

k,(ρ). That’s why this is the answer to the deformation problem with

cohomological constraints.

Theorem 1.7. The functor Def i
k(C,M) depends only on the i-homotopy type of

the pair.

This generalizes the previous theorem for differential graded Lie algebras. Note
that if you phrase things in terms of the endomorphisms of M , it’s not so intuitive
how to get this step.

As I said, the only new thing here is this construction.
The nicest case is again the formal pair case. For (C,M) a formal pair, then you

can replace the cohomology jump deformation functors by those for the cohomology
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with trivial differentials Def i
k(C,M) =Def i

k(HC,HM), and you can prorepresent
this functor by equations. Let’s say for simplicity that C0 acts trivially on C1.
Then in this case what you get

Def(HC) ≅ Q given by [ωuniv, ωuniv] = 0

with ωuniv = ∑ ei ⊗ xi where ei is a base of H1C and xi the dual base. These are
equations in OH1C , polynomials in the xi. Setting this equal to zero gives you a
set of quadratic equations in the xi.

This is prorepresented by the formal scheme at zero of this cone. In the module
case, this is Spec(OQ/J i

k(HM ⊗ OQ, ωuniv)), the formal scheme at 0. This ω is
linear in the xi, so these are minors of appropriate size of matrices of linear forms
in xi. So that’s the first note.

What I’m trying to say is that in the formal pair case, things become very
explicit. All you have to do is pick a basis and write down a matrix.

Let me write down what one gets in particular cases in the last few minutes.

Theorem 1.8. Remember X was compact Kähler and we look at R(X,n) =Hom(π1(X),GL(n,C)),
and then Vi

k = {ρ ∶ dimHi(X,Lρ) ≥ k} for ρ semisimple.

(1) Then Vi
k,(ρ) is

{η ∈ Q(ρ)∣dimHi(H∗(X,End(Lρ)), η∧) ≥ k}
This is written down set theoretically, but on the right hand side this is
actually the jump ideal and can be given a scheme theoretic expression.

(2) The second part is, if you look at Vi
k/Vi

k−1, the ones which have dimension
exactly equal to k, you get quadraticity.

Let me sketch the proof. What is the differential graded Lie algebra pair con-
trolling the problem? There’s the discrepancy between local systems and π1 rep-
resentations, but that can be dealt with. Now (ADR(X,End(Lρ)),ADR(X,Lρ)) is
our pair, it’s formal so you can replace it with its homology

(H(X,End(Lρ)),H(X,Lρ))
which gives you the first part and then to calculate dimHi(X,Lρ) = k, this is giving
you the ideal generated by the entries of the matrices that appear, you cut down
bilinear equations in the ambient space, which is quadratic to begin with.

I’m out of time, let me just state the second case of this illustration.

Theorem 1.9. We have X a compact Kähler manifold andM(X,n) as before the
moduli space of holomorphic vector bundles with vanishing total Chern class. Then
Vp,q
k is {E∣dimHq(X,E⊗Ωp

X) ≥ k}. So then Vp,q
k,(E) is {η ∈ Q(E)∣dimHi(H(X,E⊗

Ωp), η∧) ≥ k}

Let me just remark, we didn’t prove any new formality results. There are other
formality results in the literature, we have not looked at what happens there to
cohomology jump loci.


