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1. Joey Hirsh, Derived noncommutative deformation theory

[We’re happy to have Joey Hirsh visiting us from CUNY]
Thanks, Kate, Owen, for being so hospitable. I’ll talk about derived deformation

theory toward the end of the talk. I’m going to try a different way to give this talk,
some category theory and relate that to the theorem and what I’m doing in terms
of deformation theory.

The goal is to identify a complicated ∞− 1 or ∞ category that comes from de-
formation theory (basically), noncommutative deformation theory with a category
which is simpler and purely algebraic.

Before, maybe I should have said this forty seconds ago. I’ll give things in the
land of one-categories, so you don’t need to know what ∞ categories are. I hope
this will be interesting to people who HATE ∞ categories.

Here’s my plan.

(1) The Yoneda embedding ad universal colimits
(2) Categories by generators and relations
(3) Examples
(4) Statement of the theorem/goal

1.1. The Yoneda embedding. Any questions about that? Recall that for a
category C, we can take the category of functors from Cop to Sets, SetC

op

. So
we can embed C in this by taking X to C(− − −, X), call this functor X̂. So we
get a map from C(X, Y ) to natural transformations Nat(X̂, Ŷ ). This being an
isomorphism is the Yoneda lemma. This says that objects are determined by all
the maps into them.

If you’re not used to thinking of the Yoneda lemma, if you see a chair, our eyes
collect light, the light bounces, we can take this apart photon by photon and get
pixels, this is the Yoneda lemma letting us see X by bouncing whatever we have
off it.

Now I’d like to say something about universal colimits. So I’ll start by reminding
you what colimits are. If you give me a category A and a small category D and a
functor X from D → A, and I want to tell you what the colimit of such a functor
(which I’ll call a diagram, I think of D as just dots and arrows), I look at maps out
of the diagram, I want a map from each object that is coherent with the arrows of
the diagram. Formally that’s an object A together with an isomorphism between
A(A,−−−) and the limit over the diagram of A(Xd,−−−). Let me state a fact:

(1) Set has all colimits. You take a disjoint union over all the objects, and
then use a relation that comes from the identification of points with their
images.
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(2) From this, we get that any functor category landing in Set has all colimits,
and they are computed pointwise.

So even when C has colimits, the Yoneda embedding C → SetC
op

does not commute
with colimits.

I’ll show you an example. Let’s consider topological spaces. Consider a functor
X from two objects 0 and 1 with no nontrivial morphisms into spaces. The colimit
is X(0) t X(1). The Yoneda functor on the colimit is maps from spaces into
X(0) t X(1). We can instead take the colimit of maps into X(0) and maps into
X(1). So the disjoint union of maps is not the same as maps into the disjoint union.

Not only do these not commute,

Theorem 1.1. The category SetC
op

is the free colimit-complete category on C.

What does that mean? In analogy, in the category of algebras, if G is a set,
what is the free algebra, I’d say F(G) has a set map of G, and for a set map
γ : G → A I get a realization Re γ : F(G) → A. Here we take an algebra, we’ll
take categories with colimits there. So A will be a category with colimits and then
we get an analagous diagram given a functor γ : C → A there is a unique functor
Re γ making the diagram compute.

G
� � //

γ
""DD

DD
DD

DD
D F(G)

Re γ

��

C � � Y //

γ
""EEEEEEEEE SetC

op

Re γ

��
A A

As an example, let’s consider ∆, whose objects are (0, . . . , n) with weakly order
preserving map.

So then Set∆
op

are simplicial sets SSet. We have a functor from ∆ to topological
spaces, sending n to the n-simplex. This functor induces a unique functor from
SSet to topological spaces. This is made by gluing simplices in specified ways.
We take things apart, make each piece into a simplex, and then I know how to
glue them together. Topological spaces have colimits, and when I glue together I
get a simplicial complex called geometric realization. That’s why I’m using this
language.

1.2. Generators. If A is an algebra, we call a subset G
i

↪→ A a generaing set if
Re i : F(G) → A is surjective.

If A has colimits, by analogy, we call C i→ A generating if Re i : SetC
op

→ A
is surjective. I could say more by using a little more category theory but maybe I
don’t want to.

1.3. Examples. So now we’re at the examples.
The first one is kind of easy. Take fAb, which is finitely presented Abelian

groups and their morphisms. Then take the inclusions into Ab. The only thing to
realize is that in an arbitrary Abelian group you get lots of generators, but every
relation can be realized using only finitely many generators.

So that’s one example. I thought I’d go through a few others. There’s the
category Euc, with objects natural numbers and morphisms n → m the smooth
maps Rn → Rm. There’s a functor from Euc to smooth manifolds, taking n to Rn,
and I claim this is a generating subcategory for smooth manifolds.
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Essentially what needs to be checked is that we can check everything about
smooth manifolds by looking at maps from Rn. I think we all believe that.

We have the category Herm which has objects the natural numbers and mor-
phisms holomorphic maps from Cn → Cm. This generates complex manifolds.

These examples are illegal because they don’t have colimits, but there is a way to
finesse that, but here’s another example. Let’s take commutative algebras over R,
these have algebra maps between them. One of the fundamental ideas of algebraic
geometry is that to consider algebraic manifolds, you do that locally by considering
colimits of commutative algebras. So this category generates algebraic R-manifolds,
or what are called schemes over R.

So all of this works for ∞-categories. A category has objects and morphisms
between them, and morphisms have morphisms between them. I can’t draw a three
category. I can’t draw in perspective so this is all you get. If you allow everything
all the way up, you get an ∞-category. What is the (∞− 1) category? After stage
one, everything is pseudo-invertible, all the higher morphisms are invertible. That’s
one way to describe what’s happening. The first number is how high morphisms
go and the second number is above this you have invertibility. I think what this
is supposed to give you is more along the lines of ∞ − (1 category) meaning a
1-category up to homotopy.

For any (∞ − 1) category A wiht homotopy colimits, for any functor C → A
you get a realization functor SSetC

op

into A preserving homotopy colimits, essen-
tially unique. Good references are Dan Dugger, “Universal homotopy theories” or
“Combinatorial model categories have presentations.”

I planned to tell you this but not after another lie. I let you believe that in
category theory, you can do generators and relations. I think of an algebra as being
intrinsic and generators and relations are something that you can work with. In
category theory, you might have generators and relations and that’s really hard to
work with. So in deformation theory we have the following picture.

In commutative deformation theory, well, I told you that in algebraic geometry
we were talking about functors into Set. Schemes over k is generated by commuta-
tive algebras over k. So if I’m doing algebraic geometry, I’d write down a functor
from commutative algebras to Set. So here we restrict to finite dimensional nilpo-
tent algebras. Then we get an interpretation of the restriction which is geometric,
this functor is covered by infinitely small commutative algebras.

In derived deformation theory, we’d want to land in spaces and study those.
I guess I’m ready to state the theorem.

1.4. Theorem.

Theorem 1.2. The generators and relations of commutative deformation theory,
which is Fun(CAlgfd,nil,SSet) gives a presentation for the homotopy theory of
differential graded Lie algebras.

We consider functors from such things into spaces, they are Lie algebras. The
way you get these things is Koszul duality.

I’m basically done. So the only thing I’d like to say about this is if commutative
deformation theory describes functors from commutative algebras to spaces by Lie
algebras. So what kind of algebraic structure controls functors from a different kind
of commutative algebras.
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So if you extend that duality, you have a guess for what the theorem should be.
Algebraic structures turn out to come in dual pairs. An operad is a thing that con-
trols algebraic structures, and these adjectives like associative, Lie, commutative,
and so on, come in pairs (O,O!).

Theorem 1.3. (H.)
The generators and relations of O-deformation theory, Fun(OAlgfd,nil,SSet) gives
a presentation fro the homotopy theory of differential graded O!-algebras via the
duality that goes from O-algebras to O!-algebras.


