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[I’m the director of the Center for Geometry and Physics. I’d like to welcome ev-
eryone especially those who traveled far from abroad. The theme of this conference
fits very well the cause of this center. I’d like to thank the organizers and the staff
who prepared for the successful launch of this conference. I’d like to give a brief
history of the operation of this Korean government project. This is one of the 25
centers so far belonging to the organization, the Institute for Basic Science, which
was created to support basic science in Korea and the world, where scientists enjoy
conducting their research with the greatest freedom. This was officially started in
2012, but fully started operating only two years ago. We have emphasis within
geometry and physics on symplectic and algebraic geometry, but not restricted to
that. In the first year our center had its inaugural program in symplectic and
contact topology and mirror symmetry. This year we have a theme year in the
mathematics of quantum field theory organized by Professor Park and Calin Lazar-
iou. This conference kicks off this year. I want to emphasize some of our programs.
We have an intensive research program for small groups. If you want to spend some
time with collaborators to do some intensive work, you can apply for this program.
If you’d like to spend some time here, you can apply on our homepage. I’d like to
ask all of you to visit our website sometime. I’d like to introduce our first lecturer,
Kenji Fukaya from the Center for Geometry and Physics, also our distinguished
visiting fellow.]

1. July 6: Kenji Fukaya: Floer homology for 3-manifolds with
boundary I

In my generation, I’m fifty-something, Donaldson theory is something that ev-
eryone working on geometry should know. For the current generation Donaldson
theory is like a classic which is respected but not so much studied.

So this is a gauge theory that is based on the Yang–Mills equation, not the
Seiberg–Witten equations. Let me start with something that Floer considered.

Start with M3 ← E, an SO(3)-vector bundle. Now W 2(E) is nonzero on any
connected component of M , this is an assumption, and it makes life a bit easier,
because one of the most difficult things is with reducible connections, which cor-
responds to singular points in the moduli space. With this assumption there is no
reducible connection.

We let R(M,E) be the flat connections on E divided by gauge equivalence. Our
bundle is not trivial, but this is kind of like a representation of the fundamental
group. You count dimensions, and the dimension of this moduli space is 0. If I
perturb the equation that says the curvature is 0, FA = 0, then this becomes a
finite set. There are many ways to perturb but I don’t want to explain that. Now
we consider the Floer chain complex CF (M), a Z2-vector space with basis these

1



2 GABRIEL C. DRUMMOND-COLE

points

CF (M) = ⊕
a∈R(M,E)

Z2[a]

and there is a boundary operator

∂a =∑
b

⟨∂a, b⟩b

with

⟨∂a, b⟩ =#M(a, b)
where M(a, b) is the modul space of A, connections on E × R (where t is the R-
variable) where A increases to b as t goes to +∞ and A decreases to A as t → −∞
and these satisfy the anti-sel dual equation FA +∗FA = 0 where ∗ is the Hodge star
on Ω2(M ×R), modulo gauge transformation cross translation.

Now there is a gauge choice, well, A = A(t) = Φ(t)dt where A is a connection on E
and Φ(t) is a section of the adjoint bundle on E. So you can use a gauge where Φ ≡ 0
where g is a gauge transformation, and g+A = g−1Ag+g−1dg+(g−1Φg+g−1 dg

dt
)dt, and

you can always solve this ODE so that the dt part becomes zero and this becomes
the following form,

∂A

∂t
= ∗MFA

which is the ASD equations.
We consider the Chern-Simons functional A as

CS(A) = ∫
M
Tr(1

2
A ∧ dA + 1

3
A ∧A ∧A)

and if you take the t derivative you get

d

dt
CS(A) = ∫

M
Tr(∂A

∂t
∧ dA + ∂A

∂t
∧A ∧A) = ⟨∗∂A

∂t
,FA⟩L2

and so ∂A
∂t
= gradACS.

This is the usual Morse picture, and the Morse homology is the Floer homology
I’m discussing. This is a very brief review of the gauge theory and there are no
reducible connections in this special case and we can define Floer homology of
a three manifold with associated bundle. Floer wrote this around twenty years
ago. I want to say one more thing, about Yang–Mills Donaldson invariants. So let
∂X4 =M3 and EX →X which restricts E∣M = E, then we have relative Donaldson
invariants

q ∶H2(X)⊗k →HF (M ;E)
and you consider connections A on X which satisfy the equation ∗FA + FA up to
gauge and then you do some pairing with q and get a number. So given a flat
connection HF (M,E), you can count solutions that have this boundary condition.
So this was done twenty years ago. Something that was discussed but not done was
the version for three and two dimensions.

Here you have X and some homology classes and you get numbers. The three
dimensional theory you get a vector space and the 4 to 3 relative invariant is an
element of this vector space. We try to generalize this to a two-dimensional story
and that’s what I want to explain today. In this particular case I think I can work
out this kind of proposal.

So this time we have a three-manifold with boundary Σ2 and we have E →
M , and I assume that W 2(E)∣Σ = [Σ] in H2(Σ,Z2), so this means that you are
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nontrivial on every component of Σ. Then we can prove that W 2(E) ∩ [Σ] = 0,
which implies that in order that this equation holds, we will have an even number
of boundary components.

The reason we need this condition, consider R(Σ), flat connections divided by
the gauge group on Σ. Under the assumption W 2(E)∣Σ = [Σ], this is a smooth and
symplectic manifold and

R(Σ) =∏R(Σi)
and

dimR(Σi) = 6gi − 6
where gi is the genus of Σi. This is not only symplectic but Kähler with J given
by ∗ on H1(Σ, ad E), and ω is just the cup product on H1.

This is a symplectic manifold. Now we want to consider this relative invariant.
Proposed by Donaldson 23 years ago at some conference is the following.

We consider, R(M), for now we leave out E, this is flat connections E divided
by gauge transformations. The natural map i ∶ R(M) → R(Σ) takes A → A∣Σ. We
consider H0(M,adAE), which is always 0 because there are no reducible connec-
tions. Then if you have H2(M,adAE) = 0 then R(M) is a smooth manifold in a
neighborhood of A and i is a Lagrangian embedding in a neighborhood of A. Then
TAR(A) = H1(M,adAE), and the rank of H1 is half of H1(Σ, ad E), and you can
see as an exercise that the cup product restricted to this is 0. Then the restriction
map (by the inverse function theorem) is an embedding locally. You might have
H2(M,ad E) nonzero, and so you perturb FA = 0 to something like FA = ϕ(A)
which is supported away from ∂M . After appropriate perturbations, you get this
map

i ∶ R(M)ϕ → R(Σ)
which you can perturb to be a Lagrangian immersion. So now this is, the situation,
in case you have a three-manifold whose boundary is a two-manifold, then the
Segal story is about this codimension two manifold as follows. So for X4 you get a
“number” which is H2(X)⊗n → Z. For M3 you get a voctor space HF (M,E). For
Σ you get a category F (Σ), and ∂X = M implies that you get an element of the
vector space. This is the relative Donaldson invariant q(X). When X =X1 ⊔M X2,
with ∂X1 = ∂X2 then q(X) = ⟨q(X1), q(X2)⟩. Then the three and two dimensional
invariants should be related in the following way, ∂M3 = Σ2, then HF (M) is an
object of F (Σ), and if ∂M1 = Σ = ∂M2, then M =M1 ⊔Σ M2, then HF (M) is the
morphisms fromHF (M1) toHF (M2) in the category F (Σ). You expect that when
you glue, the vector space is the set of morphisms. This was proposed by Graeme
Segal in the 1990s. Then for three dimenensional case you start a dimension lower,
for three dimensions you get a number, and for a surface a vector space, and so on.

So the objects, Donaldson suggested, for F (Σ), should be Lagrangian subspaces
of R(Σ) and the morphisms should be Floer homology. This is Lagrangian Floer
homology, which, let me say it very briefly, let me consider a symplectic manifold
Y and assume, I’ll assume (as works in today’s story) that it’s monotone, so that
c1(Y ) is a positive constant times ω, so in this case Y = R(Σ) and c is known to
be 2. Maybe we should assume the minimal Chern number is

inf{∫
S2
φ∗c1∣φ ∶ S2 → Y, [φ] ≁ 0}

. Here the minimal Chern number of R(Σ) is 2. By the way, this Lagrangian Floer
theory is due to Yong-Geun Oh.
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We assume two embedded Lagrangian submanifolds L1, L2 in Y , this is already
not right for us because we’re immersed. So also assume monotonicity, meaning,
well, you have a disk u ∶ (Di, ∂) → (F,Li) and ∫ u∗ω = cM(ω), where M is the
Maslov index (I don’t want to explain this) and in our case I think c is again 2.
So suppose R(M) embeds in R(Σ), then R(Σ) is monotone. This case [we’ve been
discussing] almost satisfies these conditions in general, but there is a case in which
the Lagrangian is immersed, not embedded.

Under these assumptions, anyway, we may assume L1 ⋔ L2 by perturbations,
and then we take the vector space

CF (L1, L2) = ⊕
p∈L1∩L2

Z2[p]

and the boundary is

∂p =∑
q

#M(p, q)[q]

whereM(p, q) counts the holomorphic disks between p and q.
Remember you have ∂M1 = Σ = −∂M2 and R(M1) and R(M2) are immersed in

R(Σ); write M =M1 ⊔ΣM2.
So we have HF (M,E), the Floer homology, and we have if R(M1) and R(M2)

are embedded in R(Σ) then you get HF (R(M1),R(M2)), and if these are embed-
ded, then these two Floer homologies are isomorphic.

People tried to prove this, you have R(M1) ×R(Σ) R(M2) ≅ R(M).
[missed a little]
Still the harder case of Lagrangian Floer theory is not defined. But if the re-

striction to each boundary component is nontrivial, you get rid of some difficulty.
People still had trouble constructing it. They were able to compare in some cases
the moduli space of instantons to the moduli space of holomorphic curves, but
it wasn’t totally successful. So I’ll avoid the analytic problems using cobordism
methods. I want to explain something about the immersed case.

Let me explain something about the immersed case of L in (Y,ω). In 2009, Akahi
and Joyce generalized the Fukaya–Oh–Ohta–Ono story about the A∞ algebra on
CF (L). Let me write L = (L̃, iL) where iL ∶ L̃ → Y is a Lagrangian immersion.

Then CF (L) = H(L̃ ×Y L̃). So L̃ in general is something like L̃ → L in Y . We
have several self-intersection points. Let’s assume that they are transversal at each
intersection. Then the fiber product L̃×Y L̃ as L̃⊔ finitely many points, where these
are {(p, q) ∈ L̃ × L̃∣p ≠ q but iL(p) = iL(q)}. Note that (p, q) ≠ (q, p).

Then CF (L)H(L̃ ×Y L̃) =H(L̃) +⊕p,q Λ0[p, q] where Λ0 is a Novikov ring

Λ0 = {∑aiT
λ
i ∣ai ∈ Z2, λi ≥ 0, λi ↑∞}.

Then

CF (L1, L1) =H(L̃1 ×Y L̃2)
and

mk ∶ CF (L0, L1)⊗⋯⊗CF (Lk−1, Lk)→ CF (L0, Lk)
which is given by counting polygons.

So I’ll talk about this more tomorrow, but

∑mk1(⋯mk2(⋯)⋯) = 0
and these are the A∞ relations. In general m0 ≠ 0 so m1m1 ≠ 0 and so we want to
define HF = ker m

im m
but that won’t be defined in this case. But we say b ∈ CF 1(L)
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is a bounding chain if ∑mk(b, . . . , b) = 0 and b ≡ 0 (mod T )ϵ, ϵ > 0. Then with

bounding chains, HF (L1, b1), (L2, b2)) = ker db1,b2

im db1,b2
is defined where

db1,b2(x) =∑mk1+k2+1(b
k1
1 , x, b

k2
2

which allows db1,b2db1,b2 = 0.

Theorem 1.1. (1) Let ∂M3 = Σ then there exists a bounding cochain bM ∈
CF 1(R(M)) with ∑mt(b, . . . b) = 0

(2) If ∂M1 = Σ = −∂M2 andM =M1⊔ΣM2, then HF (M,E) =HF ((R(M1), b1), (R(M2), b2))
(3) R(M)↪ R(Σ) implies bM = 0. and bM can be created in an invariant way.

2. Ezra Getzler: The derived Maurer–Cartan locus

[I’m happy to introduce Ezra Getzler from Northwestern University, who will
talk about the derived Maurer–Cartan locus] Forgive me if I’m confused about
which continent I’m on, I arrived at 1AM.

The Maurer–Cartan equation is the equation for flat connections. If L∗ is a
differential graded Lie algebra, with grading unbounded above and below. For
instance we could take differential forms on a manifold with coefficients in endo-
morphisms of a flat vector bundle Ω∗(M,End(E)), and then we can look at the
equation for x ∈ L1,

dx + 1

2
[x,x]

, this goes from L1 → L2 and the vanishing locus is called the Maurer–Cartan locus.
Now all of this can be generalized, many of you will have seen L∞ algebras, except

there’s nothing particular in my talk that needs Lie algebras. For L∞ algebras, you
get all affine varieties, for a Lie algebra you get quadratic polynomials but then for
L∞ you can get higher degree.

There has been interested in the derived version of this back all the way to
Tate and then the work of Batalin–Vilkovisky in the 80s, and then [unintelligible]of
[unintelligible]and Kapranov. Let me give an impressionistic picture from Batalin–
Vilkovisky.

Let’s think of a graded manifold with degrees shifted by 1. The underlying
manifold, the part we want to think of as the manifold is L1 and then L0, L−1

and so on; paired with these we have L2, L3, L4, and so on. We’re specifically
interested in Lie algebras with a pairing between Li and L3−i. You’ll have the fields
ϕ as coordinates on L1, the ghosts c, coordinates on L0, the ghosts of ghosts γ on
L−1, and so on. There are theories in this formalism where you get a whole tower
of ghosts of ghosts and so on. Then on the other side, in L2 you have the antifields
ϕ∗, c∗, γ∗; this two minutes of my talk would have been the whole talk of Toën.
So c has to do with stacks, γ with two-stacks, and so on. The antifields are higher
and higher levels of derived geometry.

My subject today is, how do I describe this in algebraic geometry. I’ll talk about
two formalisms and an equivalence between them. First I’ll review the traditional
Maurer–Cartan locus and give a review of derived geometry.

I took the word derived too seriously in the title of the conference, and someone
has to tell you what a derived scheme is. I’ll be talking about affine schemes, so
I don’t have to glue them together, which simplifies the story. Many of the basic
ingredients of derived geometry are handed to you in this language. Maybe it’s
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too strong a statement, but almost all the derived schemes one sees in practice are
derived Maurer–Cartan loci.

So what’s going on? The basic idea of a derived scheme is that it doesn’t have
positive degree coordinates, but it has 0 and negative degree coordinates.

So we have M , and then O(M) is a differential graded commutative algebra
concentrated in degrees ≤ 0. [missed question about characteristic p]. I should say,
this is very special, I think that in the literature one assumes that the cohomology
is concentrated in negative degrees. I’m a geometer and I don’t know how to handle
the coordinates in higher degrees if I’m trying to do geometry.

I’m going to give examples of such guys, namely the Chevalley Eilenberg complex
of a differential graded Lie algebra concentrated in degrees ≥ 1. Let me very quickly
review this construction. It works very nicely for differential graded Lie algebras.

We suppose we have a homogeneous basis zi of our differential graded Lie algebra
so that the differential ∂zi = ajizj and I have a tensor [zi, zj] = ckijzk. I had a student
in complex geometry, I shouldn’t say this, I wrote something like this on the board
and he asked if we were using coordinates and I said definitely and he left and never
returned. So if you want to go. . .

So C∗CE(L) has coordinates ζi, the graded symmetric algebra with the degree of
ζi equal to 1−deg(zi). The differential has two terms, the linear term aijζ

j and the

quadratic term 1
2
cijkz

jzk. The differential squares to zero if and only if you have a
differential graded Lie algebra.

So Spec(H0(O(M))) ↪M , this is t0M , if we take Spec(C∗CE(L)), with Li = 0
for i ≤ 0, then t0(M) =MC(L). There’s a very natural derived scheme which en-
velops any given Maurer–Cartan locus. This is a nonlinear analogue of homological
algebra. We want some condition in terms of the algbera that is a cofibrancy condi-
tion or in terms of the scheme a fibrancy condition. Whatever notion of cofibrancy
you have, this has it because it’s free when you forget the differential.

Let me put my cards on the table. I’ll want to understand differential graded
Lie algebras in Banach spaces. I want derived geometry for differential graded
Banach Lie algebras. If I want Kuranishi theory, I don’t want a Frèchet version, I
want a Banach version. I could try very hard to understand what the Chevalley–
Eilenberg complex is for a Banach Lie algebra, but intsead I’ll use a model that
is cosimplicial. This is a more plausible explicit way of handling things for me in
the infinite dimensional case. You have to decide, for instance, on this side, what
tensor product you’re using. We won’t have those problems.

So I’m going to give a different perspective but you have a first definition.

Definition 2.1. The derived Maurer–Cartan locus of a differential graded Lie al-
gebra is the derived affine scheme associated to the stupid truncation σ≥1L, where
(σ≥1L)i = Li if i ≥ 1 and 0 if i < 1.

So this is not a sophistiacted construction. The sophistication is the construction
of appropriate differential graded Lie algebras. The only hard part is the projective
geometry they do.

I want to change the story now. I’m, someone here will know much better than
me when the idea of using cosimplicial schemes arose, or simplicial rings instead
of differential graded rings. The original introduction of simplicial commutative
rings into algebraic geometry is certainly due to Quillen. My point in this talk,
even though the Chevalley–Eilenberg construction is familiar, if you go instead into
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simplicial commutative rings, the story becomes even easier, that’s what I’m going
to be trying to explain.

I can’t assume you know what simplicial objects or the Dold–Kan correspondence
are. Let me spend 15 minutes on this, this would be a few lectures in a course on
algebraic topology.

This is a mysterious thing, I’ve never seen a convincing a priori description of
why this should happen.

So simplicial objects in a category C, which you can think of as an Abelian
category or category of rings, is a contravariant functor from some category ∆ to C.
And what’s ∆, there’s one way which is hyperelegant but really mysterious, is that
it’s the category of well-ordered, finite non-empty sets. Actually, any well-ordered
finite non-empty set is isomorphic to a standard number. The arrows are functions
that preserve the ordering. So there’s a skeleton, where the objects are [n] where
n ≥ 0 and this is the set 0 ≤ 1 ≤ n]. The arrows are functions between these sets
that preserve the ordering. Let’s look at the bottom of the story. We’ve got [0],
[1], [2], and let me write some maps between them.

[0] [1] [2]
d0

d1

s0

d0

d1

d2

s0

s1

Now you get the maps going in the other way in the simplicial object.

A0 A1 A2
σ0

∂0

∂1

σ0

σ1

∂0

∂1

∂2

now there is a normalized chain complex of a simplicial object in an Abelian cat-
egory A, A∗ ↦ N∗(A) where Nn(A) is A(n)/∑n−1i=0 im(σi ∶ An−1 → An). In an
additive category we can add these and then take a kernel since we’re in an Abelian
category.

This is the same as
n

⋂
i=1

ker(∂iAn → An−1).

In the first representation, the boundary map is ∑(−1)i∂i and in the second case
just ∂0.

You see that the first one is a colimit construction and the second one is a limit
construction.

Here’s the punchline. The theorem of Dold and Kan says that this functor
is an equivalence of catgeories between simplicial objects and connective ((−1)-
connected) chain complexes. This is Vi = 0 for i < 0 which is the same thing as
V i = 0 for i > 0. The Vi = 0 for i < 0 is very natural for topological things; in
cohomological grading we’re in the world of derived geometry. So simplicial objects
are pretty much the same as chain complexes. We use both categories as the same
thing, but there are functors on one side that look extremely unnatural on the other
side. So we’re going to see what happens on the other side with the Lie algebras.
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I should remark that the right adjoint of the functor N gives you the equivalence.
It was introduced by Eilenberg–MacLane in 1953, and this is K⋅, the Eilenberg–
MacLane space of a connective chain complex. The n-simplices of V∗ have to be
Homchain(N∗(Z∆n), V∗). This is convenient, because the n-simplex, the convex
hull of the numbers 0 to n, its combinatorial structure, there are an infinite number
of simplices but once you normalize there’s only a finite number yet. When you
unravel what this is, you get one of the two descriptions of K. The punchline of
this talk is that this is also the left adjoint of N . But no one works this out in
practice. That means there’s a really funny formula for that adjunction. I don’t
have time to give it now, but it’s related to introducing cosimplices, I’ve said that
simplicial objects are contravariant functors, I should say that cospimplicial objects
are covariant functors. They’re very different. We had this duality between positive
and negative degrees. It feels like simplicial and cosimplicial handles the two halves.
So going to the cosimplicial world, right and left adjoints are switched and so you
get an elegant formalism for the left adjoint. It was Kaledin who explained to me
this way of understanding Dold–Kan for cosimplicial objects.

So on the one hand you have N∗, the normalized cochains of a cosimplicial
Abelian group. I can show you the left adjoint in the cosimplicial world by giving
you a right adjoint, Homcochain((N∗Z∆n), V ∗). The nth cosimplex is this bizarre
thing where (∆n)m is (∆m)n. I can calculate this guy and it’s the dual of an
exterior algebra, which works over the integers, with the shuffle product, and I can
delinearize this whole theory, and Homcochain is close to the linear Maurer–Cartan
equation.

Finally with only a few minutes, let me jump and give my formula. Let
Lambdan be a differential graded commutative algebra, and it’s actually the dual
of N∗(Z∆n). It’s the exterior algebra on ξ0, . . . , xn, where these guys have degree
−1 and dξi = 1. This is just some new object, cosimplicial in n, the cosimplicial
structure is to reindex according to your cosimplicial map. Now if I have a dif-
ferential graded Lie algebra, I take its tensor product with the differential graded
commutative algebra, Λn ⊗ L∗, so I take n ↦ MC(Λn ⊗ L∗), and that’s my de-
rived Maurer–Cartan locus. So I have MC0(L) ≅ L1 mapping by d0 and d1 to
MC1(L) ≅ L1 ×L2. Here d0(x) = (x, δx + 1

2
[x,x]) and d1(x) = (x,0), so the equal-

izer is the Maurer–Cartan locus.

Theorem 2.1. O(MC∗(L)) is a simplicial commutative ring, so there’s an annex
to Dold–Kan, part of Eilenberg–Zilber, which says that N∗ takes this to a commuta-
tive differential graded algebra in degrees 0 and below, and the theorem is that this
is quasi-isomorphic to C∗CE(σ≥1L).

There’s more. The Milnor–Moore theorem says that if you have a commutative
Hopf algebra, it’s a symmetric algebra (something like that). And by a theorem
of Willwacher that no one noticed, this is a commutative Hopf algebra. [missed a
little] I’d better stop there.

[what about replacing Λn with Ωn?]
The talk I’ve been giving for the last ten years is to use C∗(∆n) wich isN∗((Z∆n)∨),

which is a finite dimensional guy which is similar to but different to differential
forms. So I’d think about Λn⊗Cm⊗A∗, putting an associative algebra there. This
is my realization of the derived stack of [unintelligible]. Illusie says that simplicial
cosimplicial Abelian groups stands in for unbounded complexes. This is like simpli-
cial cosimplicial [unintelligible], like unbounded manifolds. So algebraic geometry
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can discuss directly nilpotent Lie groups. But the exponential map is only poly-
nomial for nilpotent Lie algebras. So you can make this work for a more general
situation by putting a Lie algebra there (or by working with polynomial differential
forms, as you suggest).

3. Mikhail Kapranov: Combinatorial approach fo Fukaya categories
of surfaces I

[It’s my great honor to introduce Mikhail Kapranov from IPMU]
Thank you very much. This could be called “very elementary aspects of Fukaya

categories.” Suppose someone says “I don’t know anything about symplectic man-
ifolds, and I don’t want to know anything about them.” What do you say to that
person? That they’re already doing it without knowing it, as soon as they’re doing
homological algebra.

I want to start today in the foundation of triangulated categories and see how
some of the structures are there already.

3.1. Triangulated categories from the symplectic point of view. Triangu-
lated categories have several meanings and different versions foreground different
qualities. Let me start with the “classical” approach of Grothendieck and Verdier.

Triangulated categories are an axiomitization of Db(A) for A an Abelian cat-
egory, which is complexes in A localized at quasi-isomorphisms, Cb(A)[qis−1], or
the homotopy category of C(A), where morphisms are the homotopy classes of
morphisms of A.

For each actual morphism A
fÐ→ B you get a triangle with Cone(f) where the

map Cone(f)→ A has degree +1.
A triangulated category is an additive category V with a “shift functor” Σ ∶ A↦

A[1] and a class of triangles

A // B

��~~
~~
~~
~~

C

+1

__@@@@@@@

which satisfy some axioms. I won’t say all of them but will highlight the most
geometric ones:

(1) rotation invariance:

C // A[1]

||xx
xx
xx
xx

B[1]
+1

aaBBBBBBBB

is also a distinguished triangle.
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(2) the octohedron, for every one of these:

A
+1 // A2

}}{{
{{
{{
{{

��

A12

bbDDDDDDDDD

+1

!!C
CC

CC
CC

C

A13

OO

<<zzzzzzzz
A3

oo

with the upper and lower triangle exact and the right and left commutative,
there is one of these

A
+1 //

+1

""E
EE

EE
EE

E

��

A23

==zzzzzzzzz

||zz
zz
zz
zz

A13

OO

A3
oo

aaCCCCCCCC

with the right and left triangles exact and the top and bottom commutative;
and vice versa. This is hard to think of, and also to memorize. One way to
memorize it, draw a simplex and put the middle points of the edges of the
simplex. Write Aij on the edge between i and j for i, j ≠ 0 and Aj on the
edge between j and 0. The triangles come one the side of the simplex and
the others on the transversal of the simplex. That’s the difference between
the commutative and exact triangles.

Let’s look at this in more detail.

3.2. Objects on edges systematically. Take a triangle and put some numbering
on it like for the standard simplex:

1

0

A
��������

B
2

C

>>>>>>>>

and I imagine I have f ∶ A → B, g ∶ B → C, and h, a degree 1 map C → A. Then
we can rewrite the octahedron suppressing the commutativity. Then I get

A13 //

A3

��
A2

//

A12

??����������������

A1

OO
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and I can pass to this picture:

A13 //

A23

��?
??

??
??

??
??

??
??

?

A3

��
A2

//

A1

OO

and this corresponnds to the switch of a triangulation. This suggests something
which is invariant of a triangulation.

Let me recall that in combinatorial topology, we consider manifolds which are
triangulated, and pass between manifolds that are triangulated in different ways
by elementary moves, called Pachner moves. In dimension d we have one of type
(p, q) for p+ q = d+ 2. For d = 2 we can break a triangle into three triangles or vice
versa, this is (1,3) and (3,1). For (2,2) it’s the picture above.

For the Euclidean model, take d+2 points in Rd in general position. The convex
hull has exactly two triangulations. There is a middle type in any dimension,
p = [d/2] and q = [d/2+ 1] for an appropriate understanding of the integer part. So
for Street, you have ∂odd(∆d+2) and ∂even(∆d+1).

Anyway, in dimension two, this is all you have. It’s convenient and pleasant.
The octahedron has something to do with invariants of a manifold which might
have different triangulations.

Let me give another example, Postnikov systems (that is, towers of fibrations).
Typically this starts with an object A1, which is covered by A12, and A2 is the
fiber. This is covered by A13 with fiber A3, and so on, where the fiber of A1n over
A1,n−1 is An. This is written as a triangulation of a polygon. [picture] So polygons
are very special manifolds. The easiest situation in which we can work is when the
triangulated category is

3.3. 2-periodic triangulated categories. Here Σ2 = id or A[2] = A. An example
would be the category of 2-periodic complexes. Many version of the Fukaya category
are like this. In this case, we can improve the geometric language. If we put an
oriented edge on an object A, then change of orientation with correspond to the
shift. Change twice and we get the original object back. So to any choice of
orientation we get an object. To the opposite orientation we get the shifted object.

We can work with oriented but not ordered triangles. We can assemble these
into more complicated shapes that are not necessarily polygons.

Now let’s generalize a little bit.

Definition 3.1. A surface Postnikov system in a 2-periodic trinagulated category
V is

(1) An oriented surface S possibly with boundary.
(2) A curved triangulation T of S.
(3) An assignment to every oriented edge e of a triangulation an object A(e)

so that A(e∗) = A(e)[1] and a morphism for every corner of every triangle
so that

(4) every triangle becomes exact.
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Then we learn that we can pass from a Postikov system depending on one tri-
angulation to a Postnikov tower depending on another. [picture]

One known fact, one can pass from one triangulation to another with the same
vertices, from Teichmüller theory, is such that if M ⊂ S vertices is such that S −M
is hyperbolic, then T and T ′ with vertices M are connected by (2,2)-froms.

Corollary 3.1. To pass between Postnikov systems of different type on the same
surface. Denote by PostT (V) is the “collection” (later category) of T -Postnikov
systems, which depends (up to equivalence, late) only on (S,M). In particular, it
is acted on by the Teichmüller group.

Just from playing the octahdral axiom, we moved into something geometric. For
one example, the surface is a torus with only one point. Then we have the same
picture we drew before. [picture]

So Cone(f) ≅ Cone(f ′).
Let’s try to analyze some simple versions. Let V be D(2)V ectk. So A and B are

complexes. This is a representation of the Kronecker quiver. As such it gives an
object of the 2-periodic dervied category of coherent sheaves over P1. So this is like
A⊗OP 1 ↦ B∗ ⊗OP 1(1)}.

So Cone(f) is the fibre of E∗ at 0 in P 1 and the cone on f ′ is the fiber as X
escapes to ∞. S then I get a nodal cubic curve, and can think of that as a perfect
complex on X. So SL2(Z) acts on Perf(X). This is a known example. Let me
explain briefly how it goes. Because it acts on triangulations of (T2,0), well, each
T can be flipped. It’s also known, if it has a triangulation Ti and this contains
[α], [β], [γ] in H1(∏2Z).

[More pictures]
I think it’s a good time to stop I showed how by doing nothing other than the

axioms, we arrive in the topology of elliptic curves and Teichmüller theory. Thank
you very much.

4. July 7: Herman Verlinde: Conformal Bootstrap, Hyperbolic
Quantum Geometry and Holography I

Good morning, again, it’s a pleasure to be at this conference and school on
derived geometry. Now I assumed there would also be “and physics” so I’m the
“and physics part.” Two weeks ago I was at a conference that was of a similar
nature, about mathematics but inspired by physics. I gave a similar talk and said
some things about number theory. I’ll give my talk but basically use my own
interpretation of “derived.”

It’s the 100th birthday of general relativity. The questions we as physicists have
now are mostly related now to the quantum. There is a tension I like between
figuring out how to use math in quantum physics (for me it’s mostly a tool). I
will not make much effort to tell you what space objects will live in. Maybe it will
be a group effort to make sure that the objects I’m talking about have a space
associated to it. The other part of the tension is, math gives us useful tools but
that often, well here the motivation works backwards. I’d normal begin a talk with
the motivation, but here I’ll end the talk with the motivation.

Now when I was in graduate school one of the interesting subjects that has
returned these days is conformal field theory. This is a kind of quantum field
theory, which is hard to define in general. Graeme Segal and others have given a
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more precise definition mathematically for 2D conformal field theory. Even there
the examples are limited. There is the ADS-[unintelligible]correspondence between
a field theory (in any dimension) and a field theory in the “bulk” one dimension
higher where this conformal field theory lives on the boundary. That’s what we’ll
do on Thursday and that goes by the name holography. In my case that will be
in 2 + 1 dimensions. There’s a theory that I should call quantum gravity that has
certain rules, we don’t know what they are, but we try to use a relationship between
this theory in one dimension less and the theory in one more dimension.

A key point in all of this is that “conformal” means that the field theory has con-
formal invariance, so that the field theory we’re talking about in quantum gravity is
hyperbolic geometry. There are very fundamental things that people are disagree-
ing about right now, the “firewall” debate which would mean that this hyperbolic
geometry would break down at special locations which correspond to black hole
horizons. Again, this is for Thursday.

The key point that I’m trying to hopefully get across is that while the math-
ematics here doesn’t seem to be very well controlled, there’s something here that
is related to a natural mathematical object which I’ll call quantum Teichmüller
theory, so the Teichmüller space of a two dimensional surface with marked points.
It’s natural for a physicist to look at this at a quantized level because it’s Kähler.
There’s a very direct connection between 2D conformal field theory and quantum
Teichmüller space and also between Teichmüller space and this hyperbolic geome-
try.

I won’t always be careful with references. There’s an early paper of mine that
put down some of these connections, but the actual mathematical versions are those
of Tescher and others, Kashaev, TZ, ZZ, others. In particular Tescher and Ponsot
cracked the main mathematical problem of this Teichmüller theory and showed a
mathematical relationship with something, I don’t know whether to call it a tensor
category, a modular functor, but there’s a Hopf algebra, a quantum symmetry,
Uq(SL2), and if you know how to take tensor products here then the structure
starts to fall in place.

2D field theory has played a role in the earlier, sort of, one of the versions of
topological field theory, 2+1 Chern–Simons theory. Let me distinguish two kinds
of field theories in two dimensions. There are “rational” conformal field theories.
I’ll focus later on the central charge, and if c < 1 we have a rational conformal field
theory, the geometry is compact and finite dimensional and you can relate it to
Chern–Simons theory in 2+1 dimensions, and that leads to things like the Jones
polynomial, looking at correlations which can be used to calculate the expectations
of Wilson lines that trace out a particular knot.

This technology allows us to solve and compute these invariants exactly. The
regime that I’m going to be interested in is an orthogonal regime, where c≫ 1, and
where the rational case is compact, this case is noncompact in a certain sense, and
the SL2 symmetry is a noncompact group, and this will be a noncompact quantum
group. I’ll start today with the quantum Teichmüller theory, tomorrow I’ll discuss
2D conformal field theory, and then on Thursday quantum gravity.

[What is noncompact?]
For the Jones polynomial it’s flat gauge fields (using the Hamiltonian formal-

ism), flat connections on a Riemann surface with certain curvature singularities.
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Here we’ll have constant curvature metrics, so a flat SL2(R) gauge fields, SL2(R)-
connections, so this is noncompact, so not just the symmetries but the phase space
is non-compact. The spectrum of [unintelligible]is infinite dimensional and proba-
bly even continuous. So it’s the same as SL2(R), which has continuous and discrete
[unintelligible].

To start I’ll consider an example which has all the technical ingredients to give
the whole program here. So I’ll look at the sphere with four marked points and
look at the corresponding Teichmüller space T0,4. You could with a bit more work
do Tg,n. If I talk about the sphere and am interested in the Teichmüller space,
I’m interested in the constant curvature metrics I can put here with singularities
at these four points. So I can write ds2 = dzdz̄

(z−z̄)2 but not uniformly because of these

points. This has the familiar SL2(C) symmetry z ↦ az+b
cz+d for ( a b

c d
) ∈ SL(2,C).

So there’s one complex parameter for this Teichmüller space because I can put
three of the points at 0, 1, and ∞. I can specify, I have a transition function going
around one of the points, and I get an SL(2,C) element going around each point.

If I’m going to describe Teichmüller space, I’ll describe it in terms of an SL(2,R)
action, and then my matrix entries will be real, and I can describe

T0,4 = {g1, g2, g3, g4 ∈ SL(2,R)4∣tr(gi) = Li, g1g2g3g4 = 1}/SL(2,R).

This is a two dimensional space, keeping L fixed, and just counting the number of
dimensions left.

[this is noncompact?]
This is not compact but you’d want to do it by the usual Deligne–Mumford

thing.
If Li < 2 you call this elliptic and then you have a conical defect. If the group

element Li > 2 you call it hyperbolic and locally this thing will look like, well, if
it’s hyperbolic, the puncture, it means it’s asymptotically a hyperbolic region like
that. Let’s allow this to have infinite area for now although we’ll eventually run
into trouble and have to regulate that.

I’ll look at scattering of particles in the background of the black hole. Two of
these punctures will be particles and two will be asymptotic regions of the black
hole. So we’ll have two elliptic and two hyperbolic ones. But you could do something
more general.

The symplectic form I’ll use is the Weil–Petersen symplectic form. Another way
to get this is to start with a Chern–Simons action in 2 + 1 dimensions,

CS = h̵∫ d2xdtTr(A ∧ dA + 2

3
A ∧A ∧A)

which is again an SL(2,R) gauge theory and the phase space is the same.
For the elliptic conjugacy class I’ll write this as

2 cos(θi/2)

and for the hyperbolic case

2 cosh(ℓi/2)
where θi is the deficit angle and ℓi the geodesic length around the marked point.

I have free conjugacy classes I didn’t specify, like this one [picture], called Lα
[separates one hyperbolic and one elliptic from the other two] and Lβ [the same
but with the other choice]. These intersect. I can take those conjugacy classes
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and compute the corresponding geodesic length. These operators will not commute

with each other because these curves intersect. So [ℓ̂α, ℓ̂β] ≠ 0. I’ll eventually give
a Hilbert space on which these operators will act. I could define a state I could call

∣α⟩ where ℓ̂α will have an eigenvalue ℓα, and the same for ∣β⟩, and the object I want
to compute is the overlap if these states are normalized, it’s essentially an R-matrix,
the overlap of α and β, Rαβ = ⟨α∣β⟩. The answer is actually very beautiful.

I’ll tell you more about the R-matrix and its relationship with knots and con-
formal field theory. This is a very natural object. I can ask about the basis trans-
formation to go from one to another with these noncommuting operators.

Let me see how fast I can do this calculation, let me give just a few ingredients
and then write down the answer for what R is.

Let me write down Lα and Lβ in terms of the group elements. So Lα = tr(g1g2)
and Lβ = tr(g3g4). I could have also introduced Lσ = tr(g1g3) and Lτ = tr(g3g4). I
believe it was Goldman who showed that {Lα, Lβ}WP , the usual Poisson bracket,
is Lσ −Lτ , and the basic rule that goes into this is if the two curves intersect, then
in the commutator, you essentially have to break it open at the intersection point,
and take the minus sign. The fact that this happens locally like that is the con-
sequence that my [unintelligible]comes from a local Lagrangian. The commutator
between the Wilson lines can be figured out by doing something local between the
[unintelligible].

The whole point is that Lσ, Lα, Lβ and so on are not independent quantities,
Lσ +Lτ = L1L3 +L2L4 −LαLβ . You can also write LσLτ as a polynomial in terms
of these things of higher order. This is a local expression of the relation but you
could write it globally using L1 and so on.

There’s another result by Wolpert that one can rewrite the Weil–Petersen form
in this case ΩWP = dℓα ∧ dτα where this is the length-twist parameterization of
Teichmüller space. You cut open the space and twist, this τ is the angle by which
you twist, and there’s also a dual variable, you could say this is dℓβ ∧ dτβ , and
here you can write {ℓα, τα}WP = 1 and {ℓβ , τβ}WP = 1. So now we’re changing
bases between these two. I can write down an equation you’d have to solve to do
this translation. These twist variables are also coordinates on Teichmüller space.
So it’s possible to express ℓβ as ℓβ(ℓα, τα), τα = τα(ℓα, ℓβ), and vice versa. The
semiclassical answer is that

Rαβ = e
i
h̵S(ℓα,ℓβ).

The relationship for the generating function is that

dS(ℓα, ℓβ)
dβ

= τβ ;
dS(ℓα, ℓβ)

dα
= −τα.

If you work hard enough you can solve this and find S, which you can write in
terms of classical dilogarithms. Even more nicely, the complicated expression has
an elementary geometric interpretation. Can anyone make a guess as to what this
thing is?

Maybe to, let me give you two hints. It depends an six lengths. I have L1

through L4 and then the ℓα and ℓβ .
So

S(ℓα, ℓβ) = V ol(Tetra(
1 3 α
2 4 β

)).
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These are lengths or maybe dihedral angles. Can someone now guess what the R is?
So Wigner knew, there are objects with tetrahedral symmetry. You may know the
Wigner 6j-symbol, with the semiclassical limit for large spin, he already knew that
was related to the volume. For us with SL(2,R), the quantum theory, this turns
out to be the 6j-symbol of Uq(SL2). That turns out to be the quantum answer to
this question.

Let me give a little hint as to how this comes about. Let me give a schematic
derivation of the fact that a quantum 6j symbol is naturally related to the tetra-
hedron.

So one way of thinking about this is to go to the rational conformal field theory
case. Then I could start with a gauge theory with a different gauge group and
played the same game and I could have also looked at the 4-punctured sphere,
looking at the flat guage fields with curvature singularities at four points

F (A) =
4

∑
i=1
τad(z − za),

and quantized the space and looked at wavefunctions which are conformal blocks
of WZW conformal field theory for G, and this corresponds invariant tensors of
the quantum group G. This is a curvature singularity of the gauge field, but it
also specifies a representation in which this thing transforms. I can think of the
four-point function, I can ask about the representation associated with cutting
the four-punctured sphere in two halves, with two punctures on either side, and I
could take the tensor product of the two representations corresponding to the two
punctures on either side. I can say, look at (Va ⊗ Vb) and later take the tensor
with Vc; I could also take the tensor product Va⊗ (Vb⊗Vc), and this should be the
associator isomorphism. We associate a diagram to (Va ⊗ Vb)⊗ Vc, we project to a
representation, I want to specify d that sits between a and b, let me call it n, and
then I tensor with c and get d, and there should be a basis transformation between
this way and the way where I take b and c first and later put in a

a

??
??

??
??

c

n

��
��
��
�

��������

>>
>>

>>
>

b d

and

a

>>
>>

>>
>>

d

��
��
��
��

m

>>
>>

>>
>>

��
��
��
�

b c

and so I can associate a state by putting this Wilson line in my time evolution in a
surface, and I can do either one of these things. When I take the inner product, by
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gluing, when I look a little carefully this is a tetrahedron. The inner product gives
me a tetrahedron shaped Wilson line. Once you quantize this theory you get the
quantum 6j symbol of the corresponding quantum group:

{ a c m
b d n

} = ⟨ a

??
??

??
??

c

n

��
��
��
�

��������

>>
>>

>>
>

b d

a

>>
>>

>>
>>

d

��
��
��
��

m

>>
>>

>>
>>

��
��
��
�

b c

⟩ .

We’re doing a gauge symmetry or Kac–Moody symmetry. But I’ll have just one
symmetry, for S1, I’ll talk about DiffS1 and the Virasoro algebra and not another
gauge group. So I’ll have the Virasoro algebra and not the Kac–Moody algebra will
be what turns out to be the salient thing.

5. Alexander Polishchuk: Semiorthogonal decompositions of the
derived category of W -equivariant sheaves

I’d like to thank the organizers for inviting me. I’m going to talk about joint
work with Michel Van den Bergh. So the setup is, I’ll first explain the general
setup. I’m interested in the situation where you have a finite group G acting on
an algebraic variety X and then I want to consider the category of equivariant
coherent sheaves CohG(X), so coherent sheaves with an action of G, so in the
simplest case of a vector a bundle, a lifting of the action of G to an action on the
total space of the vector bundle, and there’s a version of this for sheaves, and I’ll
write for Db(CohG(X)) just DG(X). When X is an affine variety, it is described
by some algebra of functions, X = specA, then CohGA you can think of finitely
generated modules over the algebra A⋊G, so linear combinations of elements of G
with coefficients in A and when you want to swap coefficients you act by A.

In the case when X is a quasiprojective variety, there is a decomposition by
conjugacy classes in G. Consider for example Hochschild homology. There is a
decomposition HH∗(CohG(X)) = ⊕g∈G/∼HH∗(Xg)C(g), where C(g) is the cen-
tralizer of g. The characteristic should probably be zero, I’ll work always over C.
When X is affine, it’s a statement about this first algebra A ⋊G but it’s easy to
rewrite this, it’s an algebraic result.

We can rewrite this.

Proposition 5.1. If Y is a smooth quasiprojective variety with an action of G such
that Y /G is smooth, the geometric quotient. So G is still finite. Then the Hochschild
homology of Y , the G-invariants of that, is the same as the Hochschild homology
of the quotient, HH∗(Y )G ≅ HH∗(Y /G). So this reduces to Brion’s theorem. You
use Hochschild–Kostant–Rosenberg, and in this case when the quotient is smooth
you reduce to Y /G.

[Is there a Hocschild cohomology invariant?]
I think so but I’m interested in additive invariants. If all the quotients, if

Xg/C(g) are all smooth, for all g ∈ G, then we can rewrite the right hand side
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as

HH∗(CohG(X)) = ⊕
g∈G/∼

HH∗(Xg/C(g))

and so the problem we pose is, can this decomposition be lifted to the level of
categories? The left hand side has to do with coherent sheaves on X and the right
hand side with thes quotients.

There’s one situation where you can assert that the Hochschild homology decom-
poses, and that’s when you have a semiorthogonal decomposition. Let me remind
you what this is. When you have a triangulated category T with two full subcate-
gories A and B, triangulated subcategories, then we say there is a semiorthogonal
decomposition of T into A and B, and write T = ⟨A,B⟩ if

● for b ∈ B and a ∈ A we have Hom(b, a) = 0 and
● for all x ∈ T there is a unique exact triangle b → x → a where b ∈ B and
A ∈ A, and the choice of b and a are functors adjoint to the inclusions of A
and B.

Then we can recursively write a definition for T = ⟨A1, . . . ,An⟩. In the presence of
a semiorthogonal decomposition, additive invariants decompose so you get

HH∗(T ) =⊕HH∗(Ai).

There is the condition that all the quotients are smooth.

Conjecture 5.1. (there already may be a counterexample) If Xg/C(g) are all
smooth then there exists a semiorthogonal decomposition of DG(X) into subcate-
gories which are equivalent to D(Xg/C(g)).

This may need sharpening; I’ve heard in the last week that there’s a counterex-
ample but I don’t know what it is. I’ll focus on positive results.

So a simple example. Let G = Z/2, and then let X be a smooth variety with an
involution τ . Wanting the quotient to be smooth is the same as asking that Xτ is
a smooth divisor D ⊂ X. Then the decomposition should be two pieces, and it’s
easy to see that, well, we have a quotient π from X → Q ∶= X/τ , and we have the

inclusion D
i↪X and so

DZ/2(X) = ⟨π∗D(Q), i∗D(D)⟩.

This second term would not normally be fully faithful but the group action does
something that means that higher Ext groups don’t come into play.

I’ll restrict first to a very special case, when X is a vector space and the action is
linear, and furthermore I’ll assume that the quotient of X modulo the G-action is
smooth, and we get a complex reflection group on the complex vector space V /C.
In this case you can often check this condition, that the quotients are smooth.

Proposition 5.2. V g/C(g) are all smooth in the following cases.

● If you take a Weyl group acting on a maximal torus for types A, B, or C,
or F2 or G4,
● for real reflection groups of rank at most 3 (rank is the dimension of V
here)
● for the complex reflection group G(m,1, n), the cyclic group of order m
acting by roots of unity to the power of n, semidirect product with Sn,
(µm)n ⋊ Sn acting on Cn.
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I know any D or E type Weyl group they won’t all be smooth, and that even
for small complex reflection groups the same is true, something like G(4,4,5) or
something.

Our main result is that in some of these cases we indeed have a semiorthogonal
decomposition

Theorem 5.1. There is a semiorthogonal decomposition as desired for the Weyl
groups above and for G(m,1, n).

I’m going to shift gears and change notation. What I called G before I’ll call W
because it will be a Weyl group. I need G to denote a connective reductive group.

The construction of the semiorthogonal decomposition goes through Springer
correspondence.

Somehow the basic idea is that semiorthogonal decompositions appear naturally
in topology. We can use the picture with nilpotent orbits to get certain semiorthog-
onal decomposition for constructible sheaves. Then there’s a remarkable result of
Lusztig that lets us upgrade this to coherent sheaves in smoe cases.

So let G be a connective reductive group and g the Lie algebra of G and N ⊂ g
the nilpotent cone. So we take a resolution Ñ of the nilpotent cone of the form
{(x,B)∣x ∈ B}, which sits inside N ×X, where X = G/B is the flag variety. Then

π is the projection Ñ → N . The main kind of character in this correspondence
is the Springer sheaf, the pushforward of the constant sheaf on this resolution,
A = Rπ∗CÑ [dimN ]. There’s some additional data. This has a G action, this is
a G-equivariant constructible sheaf now, and furthermore, it’s actually a perverse
sheaf. I have no time to explain but this is a nice (Abelian) subcategory, and
the fact that the sheaf is perverse has to do with π being semismall. The most
remarkable thing is that A has a W -action, which comes, actually, from a more
general Grothendieck resolution, and you use Goresky–MacPherson, it’s a quite
nontrivial construction. It acts trivially, though, on N , so the Springer sheaf has a
decomposition

A = ⊕
χ∈Irr(W )

χ⊗ ja!Lξ[dimOa]

where Ga = Oa
ja↪ N and Lξ is a local system with ξ ∈ Irr(Ga/Goa).

So you get a correspondence between χ and (Oa, ξ). In the case of the group
GLn, all possible, there is no ξ, then you just get that the partitions are the same
on the left and right. Not all pairs on the right may actually appear.

Anyway, the main point is the following crucial fact which follows from the work
of Lusztig, although we learned of it through [unintelligible]. There is a canonical
identification

Ext∗G(A,A) ≅H∗G(X) ⋊W
since this is a pushforward of the constant sheaf on Ñ , which is the cotangent space
of the flag variety, you get an embedding from functoriality from right to left and
it turns out to be an isomorphism. Lusztig considers the C∗-action and you get a
deformation on one side. For us this is the main isomorphism, we can easily see
that H∗G(X) = H∗G(G/B) = H∗B(pt) = H∗T (pt), which is S(t∗), functions on t, so
this is S(t∗) ⋊W .

So this is unfortunately still not enough to transfer facts from the constructible
to the coherent world and the reason is that if I now consider the subcategory
⟨A⟩ ⊂ DG,c(N ), then this is actually described not by this Ext algebra but by a
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certain dg-algebra that has this as its cohomology. So there is a dg-enhancement

AdgW with cohomology AW . Then ⟨A⟩ is equivalent to the derived category of dg

modules over AdgW .
So the additional fact that I need is

Theorem 5.2. This algebra AdgW is formal, quasi-isomorphic to its cohomology, so
I can replace the algebra by AW . The proof is based on, it uses the reduction to a
finite field and Frobenius weights.

There is an old trick of Deligne proving formality using Frobenius weights, in
a commutative algebra, but here it’s noncommutative. Nevertheless we can still
reduce. The basic difficulty is to reduce to the case where you hae a Frobenius
action that is locally finite at the level of cochains, so if you can do this in the
homotopy category of dg algebras where everything is locally finite. The Frobenius
thing acts with pure weights. There is a part of this trick which is standard, and
getting to the setup there are some technicalities.

So you use these together and get that

Corollary 5.1. The subcategory ⟨A⟩ is equivalent to D(dg −mod −AW ).

This is still different than the category I want but if I have orthogonality in one
I get orthoganality in the other. There are things that I’m hiding under the rug.

Now we replace ja!∗Lξ by j!Lξ, and these already have semiorthogonality when
one thing is not in the orbit of another. Then you take RHom(ja!Lξ,A), and here
there is one more technical point due to Lusztig. Not all pairs (Oa, ξ) appear in the
Springer correspondence. He asked if there’s a more general correspondence where
all pairs appear, and there is, it’s the generalized Springer correspondence. You
need to know that you actually appear in the Springer correspondence, and this is
also a deep fact.

Maybe the easiest example is in type A, you finish after the first step; the
nilpotent orbits are numbered by partitions λ, partitions of n and for each partition
you get the corresponding module Mλ, a module over AW , and these modules
form a semiorthogonal decomposition. You order them in a certain way, using the
dominance order on partitions.

For other types, even for types when this theorem is not true, you do something
with nilpotent orbits, and then you have to describe which irreducibles appear, and
you get a similar type of problem, and repeat this multiple times to see what kind
of pieces come out.

Maybe I’ll give one example, S3 acting on the two-dimensional representation.
So we have DS3(C2). There should be three pieces in our semiorthogonal decom-
position corresponding to 3,0, to 2,1, and to 1,1,1. There’s a model correspond-
ing to the full space, so this should just have the symmetric alegbra C[x, y], so
AW = C[x, y] ⋊ S3, so the module corresponding to 1,1,1 is C[x, y], the one cor-
responding to 3,0 is just C, and for 2,1 there should be something having to do
with lines. It’s not just a structure sheaf of [picture]. You take three lines through
the origin in space. This is a different variety than three lines in the plane. This
turns out to be the right module, these three modules generate a semiorthogonal
decomposition.

Finally, let me say, there is a global version of this. The global version of the
problem, taking nonlinear actions. You take a smooth curve, so for type A you
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take a smooth curve, you have Sn acting on Cn, and you can consider DSn(Cn),
and the theorem is

Theorem 5.3. DSn(Cn) has a semiorthogonal decomposition of the required type.

You identify these things as Springer fibers, and use Goresky–MacPherson to
get to linear arrangements, and this globalizes to this case. For a partition λ you
get C[λ] ⊂ Cn, where in each part of λ the coordinates are equal and then you
consider inside of C[λ] × Cn, you consider the union over w ∈ Sn of the graphs
of w ∶ C[λ] → Cn, call this Zλ, and then you take the quotient by the induced

Wλ action and get Zλ, which maps on one hand to C[λ]/Wλ and on the other to
[Cn/Sn]. So you use this correspondence to build the functor.

6. Kenji Fukaya: Floer homology for 3-manifolds with boundary II

So I want to, today, to talk about the geometric and algebraic part of the proof
I talked about, and next time I’ll talk more about the analysis. We have M3 and
an SO(3)-bundle E over it, and the boundary of M3 is Σ and W 2(E∣Σ) = [Σ],
these are the assumptions. Then we have the moduli spaces of flat connections
R(M) and R(Σ) and we assume that the map R(M) → R(Σ) is an immersion,
which we can always do by perturbing. Then this R(Σ) is symplectic and R(M) is
a Lagrangian. Then we consider CF (R(M)) = H∗(R(M) ×R(Σ) R(M),ΛZ2

0 ), and
we have mk ∶ CF (R(M))⊗k → CF (R(M)), and I won’t define this because it will
take up the whole talk, but it basically involves counting polygons.

Theorem 6.1. There exists a canonical choice of bM in CF (R(M)) which is 0
(mod T )ϵ>0 which satisfies the Maurer–Cartan equation ∑mk(bM , . . . bM) = 0. This
lets us perturb so that Floer homology is defined; in general we have no hope because
m0 is nonzero.

Theorem 6.2. So then HF (M1 ⊔ΣM2,E) =HF ((R(M1), bM1), (R(M2), bM2)).

I’m mainly going to talk about the first theorem, which happens in a couple
of steps. Let me recall the Yoneda embedding. Say C is an A∞-category with
objects and a space of morphisms C(c1, c2), and compositions mk. Then there is
a Yoneda embedding C → Func(Cop, ch), where ch is the dg category with objects
chain complexes. The opposite category has objects the same, but Cop(C1,C2) =
C(C2,C1). There are signs on mk but I’m using Z2 coefficients today.

So D is an object of this functor category, this means that for any c in Ob(C),
then D(c) is a chain complex. If c0, . . . , ck are objects, then we have a map nk ∶
D(c0)⊗⊗ki=1 C(ci−1, ci)→D(ck), and we have the relations

∑nk2(nk1(y, x1, . . . , ) . . . , xk) +∑nk1(y, . . .mk2(⋯)) = 0
and this is the definition of being an A∞-right module. So for c and c′ in C we can
take C(c, c′), and you can take m to n, and you can prove that this A∞ functor is
an equivalence [unintelligible]its image.

So we are in the situation that ∂M = Σ and R(Σ) is symplectic. So we consider

the A∞-category F (Σ) whose objects are Lagrangian immersions L̃
iÐ→ R(Σ) along

with b ∈ CF (τ) such that ∑mk(b, . . . , b) = 0.
We have F (Σ) mapping into Func(F (Σ)op, ch). First we’ll construct HFM here

in the functor category, F (Σ)op → ch, and then the second step is to show that
there is bM so that (R(M), bM) which represents this functor.
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One step is to cook up the A∞ functor and the second step is to show that it’s
representable. Once we cook up this functor, then bM is well-defined. The first
step, I was writing some papers in 1997 or something like that and I claimed to
have this functor. I couldn’t prove this next step so I stopped. What do I mean
by this functor? One is, given (L, bL), we should find HF (M, (L, bL)). Then given
(Li, bi), we should find

CF (M(L0, b0))⊗⊗CF ((Li−1, bi−1), (Li, bi))→ CF (M, (Lk, bk)).

In 2000 or something, Salamon–Werhein did this first thing for objects for L mono-
tone. The second step was sort of outlined in 1997 but never published. The
representability I didn’t know how to do 20 years ago. Now I’ve found a way to go
through.

The idea is the following. You consider the ASD equations on M × R, and the
boundary is something like Σ×R. You also have kind of ends at ±∞. IfM is empty,
you have asymptotic boundary conditions, but here you also have [unintelligible].
The idea is to use L as a boundary condition.

We consider that M/cpt is Σ× (−1,1) where Σ×1 = ∂M with the direct product
metric ds2 + gΣ. So for A a connection on M × R, we have ∗FA + FA = 0. What
happens on A∣(Σ×⟨1⟩)×R. You have some boundary conditions. Their result, they
proved the first option. Their method to deal with compositions has some trouble,
which is why I wnated to do something. I stopped for 17 years after my paper of
1998 in GAFA. So take this function χ, this function [−1,1]→ [0,1], [picture], you
start at 1 and becomes 0 after 0, so χ(s) > 0 for s < 0 and χ = 1 in a neighborhood

of s = −1, so something like χ(s) = e 1
s around 0. I use this χ and this metric, g,

which is g on a compact subset of M but then is ds2 +χ(s)2gΣ for Σ× [−1,1]. This
degenerates in the fiber direction for positive s.

So A is a connection on M × R, and the equation is FA + ∗gFA = 0, that it’s
anti-self dual. It makes sense on the compact part and when s is negative. But
what about when s is positive?

Let me consider [1,1)×R×Σ and write A = A+Φds+Ψdt. This is a two-parameter
family of connections on Σ. Then the anti-self dual equation is equivalent to the
following two equations:

∂

A
∂t − dAΨ = ∗gΣ(

∂A

∂S
− dAΦ)

and

χ(s)2(∂Ψ
∂s
− ∂Φ
∂t
+ [Φ,Ψ]) + ∗gΣFA = 0.

These equations work even for χ = 0. Then the second equation is just FA = 0. So
somehow you have a domain [picture], and on one part of it you have a family of flat
connections parameterized by s and t. What is the first equation? You know that
∂A
∂t
− dAΨ and ∂A

∂s
− dAΦ is dA-closed. and the second is the ∗ of the first, so then

they are dA-harmonic. This means that φ(s, t) = [A] ∈ R(Σ). Then ∂φ
∂s
∈H1(Σ,A)

is the harmonic forms D1(Σ,A). Then the second equation is ∂φ
∂t
= ∗∂φ

∂s
and this

is [missed], I’ll talk about this equation more on Thursday. We use a package,
something like Yang–Mills theory or Gromov–Witten theory. Today I’ll pretend
everything works and [unintelligible].

Okay, so now we consider the moduli space. One thing i can say is the following.
You can put the boundary value L at s = 1 very naturally. When t goes to ±∞ you
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need the following asymptotic boundary conditions. Take R(M)×R(Σ)L̃, L̃→ R(Σ),
and this is a natural thing to put at the boundary. So let’s assume that this fiber
product is ∐Ri, a disjoint union of smooth manifolds (that is, that the intersection
is clean). So thenM(L,Ri,Rj ,E) is the set of connections A on M ×R satisfying
these equations ∗FA + FA = 0. Then A(t, s = 1) has gauge equivalence class on L.
Then as t → −∞, the element of Ri, as t → +∞, elements of Rj , and you want to
divide by gauge equivalence classes times R, you have

E = ∫
s≤0
∣∣FA∣∣2 + ∫ φ∗ω

So you have Ri and Rj at the various ∞s and then lies on L on the other part of
the boundary.

Now M(L;Ri,Rj ,E) maps to Ri and Rj by taking t → ± limits. So one can
make this a smooth manifold but for safety it’s probably better to do this a different
way.

So then we can cook up something Ω(Ri) → Ω(Rj). So ∫ f(E)(α) ∧ β =
∫M(L,Ri,Rj ,E) ev

∗
−α ∧ ev∗+β. Maybe it’s better to write this, well, write n0,E for

the coefficient, and it’s ∑E TEn0,E
In general n0 ○ n0 is nonzero. You have this

∂M(L,R1,R2,E) =∐M(L,R1,R,E) ×RM(L,R,R1,E2)

and this implies that n0 ○ n0 = 0.
The problem here is that, there’s another boundary at this level, a disk bub-

ble. You have solutions that show up as boundary values like this [picture]. We
can handle them as we do in regular Floer theory. We have this chain complex
CF (M,L)⊗CF (L)⊗k → CF (M,L) which makes this a right CF (L)-model.

So now we have this structure, we put marked points down and this gives mk.
Now I explained the case with just one manifold. This is the same for right A∞-
modules (over categories) in this way. In particular, a bounding chain in CF (L)⊗k,
well nk(b(η, b,⋯b) = db and dbdb = 0. Then we can define HF (M, (L, b)) as kerdb

imdb
.

Then the key new thing that came this year is that this is unobstructed. Suppose
that D is a right A∞ module over C and I want 1 ∈ D to be cyclic. We have a
map C → D which sends x ↦ n1(1, x), and the first assumption is that this is an
isomorphism. Secondly, n0(1) is equivalent to 0 modulo T ϵ for ϵ > 0. Then there
exists a unique b ∈ C which is 0 (mod T )ϵ such that ∑mk(b⋯b) = 0 and db(1) = 0.

Let me explain the proof very quickly. To prove this Lemma, we solve the
equation db(1) by expanding by a power series in d. Then we find a unique solution.

Let me consider now a geometric situation. Suppose ∂M = Σ and we have the
immersion and the A∞-functor CF (M,R(M)), the right CF (L)-module. So now
we take L = R(M). This CF (M,L) is a right CF (R(M)) module. This is a
Λ0-module.

[missed a little]
The element we construct satisfies the construction and we can apply the lemma

to get b(m). I want to explain why this is correct. We consider n1 modulo T ϵ. How
do you define it? You have A and you have ∗FA+FA = 0. You only consider energy
0, that’s the trivial case, so A is globally a flat conncetion. Then you have trivial
flat connections, everywhere the same. You can just see this in the first part.

[missed a little of the explanation]
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Then we can use this algebra to obtain bM . We’re solving the equations above
inductively on energy. So now if we just see the proof, we define this inductively,
[picture]. These are highly nontrivial equations and getting an explicit answer is
basically impossible so this is really more of an existence theorem.

7. Si Li: Deforming holomorphic Chern–Simons at large N

Thanks very much for the opportunity to talk here. I’m going to talk about
joint work with Kevin Costello. This work is motivated by a rather deep idea in
physics, about gauge gravity duality. The most famous version is AdS-CFT, which
says that gravity on the bulk is a gauge theory on the boundary. So you might
have SUGRA on the bulk and SYM on the boundary. We try to understand this
correspondence from [unintelligible]point of view and also from open string duality.
My goal is to understand open closed theory in the topological B-model and this
has some relation with this gauge-gravity duality.

For this open-closed business, also related to homological mirror symmetry, and
one essential ingredient, suppose I work with a free algebra A = C[xi], and for
example, I can compute HH(A) as ⋀Der(A). This acts like a connecting map
between open and closed. I’ll be focusing on algebras on [unintelligible]. I want to
focus on the following message. First of all, this is a connecting map, and on the
other hand, plays the role of anomaly cancellation, when you try to [unintelligible].
So let me try to explain this a little bit.

I’ll start with the gravity side. The kind I want to discuss is called Kodaira–
Spencer gravity. This is related to deformation theory on Calabi–Yaus, so I’ll be
working with X a Calabi–Yau 3-fold. I’ll work with the simplest case X = C3.
Obviously the quintic {z51 +⋯ + z55 = 0} ⊂ P4 is more interesting.

Let X be compact Calabi–Yau. First I want to put some gravity on this back-
ground. I want to start with Einstein gravity. We can, for example, have a Ricci
flat metric, Ricg = 0. By the way, I should say I will fix a Kähler class. This is
related to the famous Calabi conjecture, Yau theorem. A complex structure in this
Kähler class, there’s a unique flat metric. This is described by a Maurer–Cartan
equation ∂̄µ + 1

2
{µ,µ} = 0. These have relations but it’s very deep to understand

how they’re connected.
This kind of Maurer–Cartan data can be realized on a Calabi–Yau 3-fold as the

equations of motion of a so-called Kodaira–Spencer gauge theory. This is called
BCOV theory, and I’ll call this KS gravity. The original BCOV proposal works
for a Calabi–Yau surface, and we extend the structure to any Calabi–Yau with
Costello. At the end of the day, the full content is given by fields, polyvector
fields on X, with a formal variable, PV (X)[[t]], and by the way, I really mean
PV (X) = A0,∗(X,⋀∗ TX). The classical equations of motion for this extended
theory is somehow equivalent to this kind of equation ∂µ+ 1

2
{µ,µ}, where Q = ∂̄+t∂

where ∂ is the divergence with respect to the Calabi–Yau volume form ΩX .
This is the closed string field theory in the topological B-model.
Now let me move to open string on the gauge side.
The kind of gauge theory I want to discuss is holomorphic Chern–Simons. So,

let me roughly describe what this is. The fields is going to be (0,1)-forms valued
in a Lie algebra, so A0,1(X,glN). So

HCS[A] = ∫
X
Tr(1

2
A ∧ dA + 1

3
A3) ∧ΩX .
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If you look at the classical system of equations of motion, you’ll find δHCS
δA
= 0 gives

you ∂̄A + A2 = 0, which is another Maurer–Cartan equation, in this case giving a
holomorphic vector bundle.

I eventually want to quantize. I can do my gauge fixing conveniently with the
Abelian, BRST-BV formalism. I enlarge my space of fields to a bigger space, my
fields are A0,∗(X,glN)[1], so I have fields in A0,1, and A0,0 are my ghosts. You
have another two copies, and A0,2 are my antifields and A0,3 my antighosts. The
whole thing, we can do quantization, this is the perfect example so I can see the
ghosts, I’ll come back to this.

[A small point, the antighosts are not the antifields of the ghosts usually.]
You’re right, I’ll say it like this for symmetry.
So we should think of the dual of open strings as closed strings, and we’ll think in

this way and try to deform holomorphic Chern–Simons. Let’s call A0,∗(X,glN)[1]
by E , my space of fields. We have the classical master equation {HCS,HCS} = 0.
And actually, this equation is nothing but saying that this comes from a differential
graded Lie algebra. The deformation theory for this holomorphic Chern–Simons,
this deformation is controlled by the following complex, the BRST complex. Let
me write some notation. I’ll say Oloc(E) is the space of local functionals on E and
local means like, these functionals are written as ∫X L, integrals of a [unintelligi-
ble]density, very special distributions on the space of fields. Bracketing with the
Chern–Simons functional gives a differential on Oloc(E) and this gives the defor-
mations.

Usually if you work with an arbitrary Lie algebra, this will be complicated.
There’s a nice simplification where everything simplifies, the so-called large N limit,
which is also related to many notions from physics. For our purposes this is sim-
ple. Our differential {HCS, } represents a Chevalley–Eilenberg differential, so
computing the homology is just computing the Lie algebra cohomology. There’s a
classical theorem that says that Lie algebra cohomology at large N , a theorem of
Loday–Quillen–Tsygan says that this is the same as the cyclic complex. This will
be the key thing we’re going to use. If you work it out very carefully in large N . If
you work it out very carefully you get something like this.

Let me use more notation,

Oloc( CC⋅
´¸¶

cyclic complex

(A0,∗)[1])

this is related to the local multi-trace operator.
So CC⋅(A0,∗) can be represented by t−1PV [t−1] with the natural differential

Q = ∂̄ + t∂. So we know this is kind of dual to the space of fields for the Kodaira–
Spencer bracket. You integrate polyvector fields on Calabi–Yaus.

If you try to look at tree-level amplitudes for this theory, you’ll see Givental’s
formalism. [missed example]. At the superpotential you’ll see Seidel’s primitive
form [?]. The punchline is that the Kodaira–Spencer gravity for us will give rise to
a kind of universal object in deforming this holomorphic Chern–Simons at large N .
This is the linear dual, which is a single trace operator.

This comes from the abstract calculation. You can write down a very precise
formula for how this is coupled, let me write down some formula to give you a sense.

So I start with holomorphic Chern–Simons, the following data. I try to couple
A0,∗(X,glN)[1]⊕PV (X)[[t]]. Write an element A or µ, so let me write HCS(A)+
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I(A,µ) for my deformation. So I(A,µ) can be written as some kind of integrations
on configuration space

∫
Cm,n

where Cm,n is the configuration space of points on the disk, m points on the
boundary and n points in the interior. This kind of formula appears in Kontsevich’s
deformation quantization. This is a cyclic extension of his graph formula, and is
basically due to Willwacher and Calaque, trying to prove cyclic formality. Let me
give you a sense by trying to write down a formula.

For example, here’s how it looks like. Let’s consider the case when I have a
polyvector µ from Kodaira–Spencer gravity, and we can write this in local coordi-
nates as µi1⋯im∂i1 ∧⋯∂im. Then A ∈ A0,∗(x,glN)[1], and you try to write down a
first order deformation [picture]. The coupling works, you apply the µ as differen-
tial operators to the boundary. This corresponds to a local Lagrangian density in
the following form

c∫ Tr(µ +A ∧ (∂A)m) ∧ΩX .

So for example, if you like local coordinates, you could write this like

c∑∫ (µi1⋯im(A∂i1A⋯∂imA) ∧ΩX .

This is Kontsevich’s graph formula, modified by Willwacher, the coupling constant
is an integral over this configuration space.

In general it will be very similar, the coupling is realized by graph integrals,
where you have interior points and graph data, and you can apply polyvectors in
different ways. [picture].

So the main point at this point is quantization. This is the classical story, you
can treat this as a disk amplitude. The interior are closed strings, the boundaries
are open strings. You want to work out the quantization. For example, you can
use Feynman diagrams but you have to worry about gauge anomalies. Let me
start with S0, the action functional, which is HCS(A), coupled to this gravity
by 1st order. Basically we want to use the initial data and deformation theory
to reconstruct the quantization. Now the space of fields has two componentns
A0,∗(X,glN)[1]⊕ PV [[t]], now in particular, we have a Poisson bracket of degree
1. Only working to first order, this also satisfies the master equaiton {S0, S0} = 0,
which follows from this being an L∞-morphism.

I want to quantize this one in the BV -formalism, and the basic idea is that I
start from solutions of the classical master equation S and try to find something S
that satisfies the quantum master equation. Roughly speaking this looks like

(h̵∆)e
S
h̵ = 0.

You can work with this algebra, but for us there’s a more serious problem, because,
let me write it here.

The problem is that this is an ∞-dimensional space. The space of fields is a
very big space. It turns out that ∆ is actually singular. The kernel is represented
by δ-functions, related to having ∞-many degrees of freedom. So first we need to
make sense of this equation.

We can renormalize the theory as a solution. The idea is, this is a remarkable
thing from physics. Analyzing this requires using terms to cancel singularities.



GAP XIII 27

We hope our gauge theory is preserved at the quantum level. This may not be
solveable in this equation. So you make some obstructions for solving this equation,
and sometimes this is called gauge anomaly. If you can find the solution, then the
key point is that you can compute the coordinate functions for some observables,
then

⟨O⟩ = ∫
L
OES/h̵.

Once you have a quantization you have these evalutations. [missed a little].
What’s happening in our system? If you work with holomorphic Chern Simons

itself you find anomalies. [missed a little].
I have a bunch of data, open and closed data. The closed data has polyvector

fields. I have t−1PV [−1] ∂→ ∂PV . and there’s a boundary that makes the whole
thing unpleasant.

[missed a little]. The upshot is that, well, you can combine everthing and if you
do so the complex is simplified to PV ((t)),Q = ∂̄+ tD. The upshot is the following.
The anomalies all cancel. If you try to work with one loop, there’s anomaly at
the annulus level. Let me use this to represent holomorphic Chern–Simons, if you
look at 1-loop things, this represents [missed]. If you renormalize and couple you
get something nonzero [pictures]. Remarkably ther’s another sector, which gives
this diagram [picture]. You apply a closed form BV, which basically represents
something like a closed BV, and you get {I, I}c = 0.

Then you use a deformation and eventually it becomes closed strings. That’s
the point. Now, the theorem is the following.

Theorem 7.1. We work with a local piece of the Calabi–Yau, so just Cd, for d
odd. There is a canonical quantization from this coupled system, starting with S0,
satisfying symmetries that I don’t want to mention. The anomalies cancel out, and
the connecting map, things cancel. This is a large N statement with gl(N ∣N) to
have trace 0.

So for example, you can use Feynman diagrams, to build up these functions for
a nontrivial topology. You can have some input from open strings. I should stop
here.

8. July 8: Mikhail Kapranov: Combinatorial approach fo Fukaya
categories of surfaces II

[I have some announcements to make before we start the lecture. Despite the
weather we will still go on the trip. We will meet at the lobby at the POSCO
international center at 1:50. We’ll leave at 2:00 sharp. Tell Soojin if you are
interested. Please take your belongings as this hall will be closed at 12:30. There
will be a group photo session after the last lecture. If you’d like to join the banquet
tomorrow please tell Soojin if you are interested before lunch.] Something I’m
missing from Monday is enhancements of triangulated categories.

In particular, we need this to have functorial cones and some other things. We
were talking Monday about classical triangulated categories. Maybe I’ll say one
more thing here. In a triangulated category, HomTC(A,B) is typically the set
of equivalence classes of something, and what you’re really interested in is this
something, and that’s the enhancement.

Here there have been several different points of view. One I’ll focus on and give
more detail about.
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(1) The first approach is Grothendieck derivators. I will not discuss this. It’s
more in the classical spirit. It will be more convenient for me to use a
different approach.

(2) Pretriangulated dg categories. I’ll expand on this in a moment, this was
begun by Bondal and myself and enhanced by Tabuada–Töen

(3) The stable ∞-categories of Lurie
(4) (often used in the Fukaya category literature) A∞-enhancements.

In the relations among all these things. Between the pretriangulated dg-categories
and stable ∞-categories there is basically an equivalence given by the dg nerve,
introduced by Lurie and by Behrend–Getzler. Pretriangulated implies that the
∞-category is stable, that was a poster talk in this conference. There is also an
A∞-nerve with a similar property related to stability (due to Faonte). I’ll focus on
the pretriangulated dg category case in more detail.

Consider dg categories, where HomC(A,B) is a cochain complex over some field
k. In this case, the equivalence classes is the homology of this complex, H0C is a
usual category with the same objects as C and taking H0Hom(A,B) as morphisms.
In particular, the homotopy category of an additive category A is the same as
H0C∗(A).

When we have a dg category C then as in Kenji Fukaya’s talk, there is a Yoneda
embedding C →ModC which is Funo(C,C∗(V ectk)). We can factor this to Pre −
Tr(C) which is the closure of C under ⊕, Σ, and cones. This is such that H0Pre−
TrC is always triangulated. You could ask for closure under direct sums, there are
deep reasons to do this sometimes, but let me not do this or talk about this to save
time.

We call C pre-triangulated if iC ∶ C → Pre − TrC is a quasi-equivalence if it
induces quasi-isomorphisms on Hom complexes (always true for iC) and H

0(iC) is
essentially surjective. These properties imply that H0(C) is triangulated, and then
C is called an enhancement of V = H0(C). It’s hard to do anything without such
an enhancement.

To every C we can associate the derived category of modules over C, DModC ,
which is ModC[qi−1], the derived category of modules, and I’ll also use Morita
equivalence, which is a functor inducing an equivalence of the derived category of
modules.

Having said this I can move to the Waldhausen S-construction. So let me call
the second part of my lecture

8.1. The Waldausen S-construction. This is for surface Postnikov systems and
if time permits or on Friday, as well, Fukaya categories.

I think the S stands for Graeme Segal. I rushed the previous part, paying lip
service to formalities. But now let me slow down a little bit, I don’t want to rush
this part.

Let me recall the Grothendieck group of an Abelian category. Let A be an
Abelian category. Then K0(A), the Grothendieck group, is generated by symbols
d(A) for A ∈ A, subject to the relations d(A1) + d(A2) = d(A12) when there is a
short exact sequence

0→ A1 → A12 → A2 → 0.

You can think of this as being physical. You have some sort of interaction, three
particles collide and five come out, so you say that the sum of three particles is equal
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to the sum of the five particles, and the elementary particles are the generators of
the group—if you have them.

[Now I understand physics.]
[Let me say, that from a physical perspective this is totally wrong.]
Yes, yes, yes. Nonetheless. Let me pass to higher K-theory, syzygies among

these relations. Suppose for example that we have det(A), which are objects of
some tensor category (P,⊗) and isomorphisms det(A1)⊗det(A2)→ det(A2), there
is a question about how these isomorphisms behave, for A1 ⊂ A2 ⊂ A3, the question
is we can go in two different ways.

det(A1)⊗ det(A2/A1)⊗ det(A3/A2) //

��

det(A2)⊗ det(A3/A2)

��
det(A1)⊗ det(A3/A1) // det(A3)

and you want to know if this commutes. So this leads to a simplicial category S⋅(A)
that comes naively from this sort of picture. The ⋅ means that we have SnA for each
n. So Snaiven (A) is the category of filtrations A1 ⊂ ⋯ ⊂ An and their isomorphisms.
These should have face operators ∂i for i = 0, . . . n, for i ≠ 0, ∂i just forgets Ai. Then
∂0 takes the quotient by A1. If you do this, then strictly speaking, there should be
some identities, and they don’t hold. ∂0∂1 and ∂0∂0 are isomorphic but not equal
and that’s annoying. The S-construction of Waldhausen rigidifies this. This may
seem like a small detail but it’s important for things to move smoothly. The correct
refinement due to Segal and Waldhausen is this, Sn(A) is the category of diagrams
where the quotients are given as part of the structure.

A00
// A01

��

// A02

��

// ⋯ // A0n

��
A11

// A12

��

// ⋯ // A1n

��
⋱ ⋯ ⋮

��
Ann

such that every horizontal arrow is mono, Aii = 0, all vertical arrows are epi, and
for all i < j < k we have 0 → Aij → Aik → Ajk is a short exact sequence. So Aij is
like Aj/Ai in the naive version.

Then everything is okay. Then Ki(A) is the same as πi+1∣S⋅(A)∣. You need a
simplicial object to do geometric realization here.

Now I want to discuss the shape of this diagram. It’s possible to write it some-
what differently. You can write its geometric shape. Put Aij into the vertices of
a certain polytope ∆(1, n), which is the convex hull of midpoints of edges of the
simplex ∆n. The vertices are

ei+ej
2

, and you take the convex hull. In particu-
lar, ∆(1,2) is a triangle. ∆(1,3) is an octahedron. We had this picture before.
In general, you have this in higher dimensions. This polytope is related to the
Grassmannian of two-dimensional subspaces in Cn+1. here you have the action of
U(1)n+1. The image of the moment map is exactly this polytope. This is related
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by the Plücker embedding in P(⋀2Cn+1). This has some sort of symplectic flavor.
There are symplectic forms here. On a very formal level, we get something that
suggests symplectic geometry. One can prove the following fact about this.

Theorem 8.1. S⋅(A) has the 2-Segal (triangulation-invariance) property. For ev-
ery n and any triangulation of the (n + 1)-gon, there is a map, we can view a
triangulation as a simplicial complex. Every triangle is a simplex so this matches
up to isomorphism on edges. You have Map(T , S⋅A) the space of T -membranes.
You can lift a triangluation to the simplex. Every triangle here gives me a triangle
in the simplex. So T can also be embedded into ∆n. There is a restriction map
Map(∆n, S⋅(A)) which is Sn(A). [pictures]. This map from Map(∆n, S⋅(A)) =
Sn(A) toMap(T , S⋅(A)) is an equivalence of categories. In particular,Map(T , S⋯(A))
is independent of T . Passing between two triangulations is something like associa-
tivity and this is related to the associativity of Hall algebras. There was a famous
paper about Hall-hole haloes, of Denef. This was for the Hall effect.

Now I want to get to a more general setting. This was in the more elementary
setting of Abelian categories. Now we can do this for pre-triangulated categories.
What do we want? We should speak not about short exact sequences but about
exact triangles. So this is the second level. The third level should be an exact
octohedron. The nth level should be an “exact hypersimplex.” So formally, we
convert C into a stable∞-category, call it C∞. Then define Sn(C) to be the category
of diagrams in C∞, except we don’t talk about mono or epi maps, we can talk
about Cartesian squares. One feature of this kind of category is that Cartesian and
coCartesian squares are the same. So all squares (for instance

Aij //

��

Aik

��
0 // Ajk

for exact triangles) are (co)Cartesian.

Theorem 8.2. This is 2-Segal.

This by the way is how you defineK-theory for enhanced triangulated categories.
Now we want something else.

(1) First, we want to have SnC not just a category or homotopy type but a dg
category. We want a category of exact triangles or exact octahedra.

(2) More important, if C is 2-periodic, we want a cyclic symmetry, we want
SnC to have Z/n + 1 symmetry. So for n = 2 this is Z/3-rotation invariance
of exact triangles.

A // B

��~~
~~
~~
~~

C

+1

__@@@@@@@

goes by τ to

C // A[1]

||xx
xx
xx
xx

B[1]

aaBBBBBBBB
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with τ3 = Σ2. For this, we redefine SnA as MapdgCat(Sn,A) for an ap-
propriate system Sn of dg categories. We should have Sn be co-simplicial,
a category ∆ → dgCat and also have a Z/n + 1 action on Sn. So then we
have an extension to Connes’ cyclic category

∆

��

// dgCat

Λ

<<xxxxxxxxx

9. Herman Verlinde: Conformal Bootstrap, Hyperbolic Quantum
Geometry and Holography II

In today’s lecture I’ll discuss the first word of the title, the conformal bootstrap.
I’ll try to emphasize the geometric parts of what the conformal bootstrap is. There
are many interests in conformal field theory, and the bootstrap is a way of solving
conformal field theory. This has to do with things like, well, if you discuss the boiling
point of water, this is the three dimensional Ising model, which is a conformal
field theory. Various constructions have not been done analytically but using this
powerful idea. Usually this is defined using a Lagrangian, but with the bootstrap we
bypass that notion, and the associativity of the operator product, the consistency,
gives you such a strong constraint that the structures you can write down are very
limited.

A very quick summary of what you could call a definition of the conformal field
theory. In two dimensions you could look at a cylinder, and think about radial time
evolution and think that the states of the theory are Hilbert states like ∣ψ⟩ and if
I put a state that evolves in time in, I can put Ot at the origin and time evolution
becomes radial evolution away from the origin. Here I’m making use of conformal
invariance. I use coordinates z and z̄. Then it only uses the complex structure of the
space and locally I can redefine my coordinates, and if z and z̄ go to new coordinates
z′ and z̄′ I should get something looking similar, so [something about DiffS1] and
this thing has a Lie algebra known as the Virasoro algebra. The generators, I could
label them by infinitesimal transformations, which are vector fields I can write as
formal expansions V (z) = ∑∞−∞ vnz−n+1, and then [LV , LW ] = L[V,W ] + c

12
⟨v,w⟩,

where ⟨v,w⟩ = Res(v∂3w). I have Diff(S1) as well corresponding to z̄, and so the
symmetry breaks into what we call left movers and right movers. In the Hilbert
space it turns out you can write it as a direct sum over labels

HCFT = ⊕
(a,ā)

Va ⊗ V̄ā

where these are lowest / highest weight representations of the Virasoro algebra,
which means like LV = ∑n vnL−n, these are called the Virasoro generators. It’s a bit
easier to say that Va is the span of all things L−n1⋯L−ns ∣ha⟩ where L0∣ha⟩ = ha∣ha⟩,
where this na is the conformal weight and this state is annihilated by Ln for all
positive n. I have to be able to give a collection of ha’s. There’s the famous BPZ
paper, they showed that for c < 1, there is a discrete set of values of h that you
can allow. The reason that’s a self-consistent set is because you can formulate the
bootstrap for that. Unitarity already gives very strong constraints. There are all
kind of special things happening for c < 1 and as I said these are called rational
CFTs and there are a finite number of has. In fact c is a positive number, a
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discrete set of allowed values between 0 and 1 or some subset of c > 1, in my point
of view, for gravity, the regime c ≫ 1 is the interesting regime. Doing quantum
geometry yesterday, you have to think of c as 1

h̵
where h̵ is the quantumness of

the geometry. Classical is the regime where c ≫ 1. The most quantum regime
c < 1 has lots of special features. There are other soluble CFTs which all have
additional symmetries on top of the CFT symmetries. But what I want to look at
is what people call irrational CFTs where c can be bigger than one but I make no
assumptions about additional symmetries. Then indeed this sum here, if you have
additional symmetries, it’s more natural to expand these modules to give additional
symmetry generators. Here I’m assuming I only know about Virasoro symmetries.
These things have a certain eigenvalue for L0, the conformal weights. When I act,
well, L0L−n∣h⟩ = (n + h)L−n∣h⟩

It turns out that ha − h̄a turns out to be an integer, since rotation by 2π gets me
back to the same state. This gives a restriction about the left and right movers. In
first approximation I know nothing further about the allowed values of ha. I want
to write down equations about which choices of ha are consistent. This turns out to
be a rather strong restriction. If the h are random numbers, you could expect that
the spectrum of a and ā is the same spectrum, but they could appear in different
combinations. With no other symmetries, then a and ā will likely be equal.

Anyway, that’s our task, and this is the structure of the Hilbert space. The nice
thing about conformal field theories is that you can use nontrivial topology. You
start out with something like [a pair of pants] where all three directions have their
own time. I’m looking here at this object, I can do the CFT on the partition sum,
it associates to this [unintelligible]an element of HCFT ⊗HCFT ⊗HCFT , and if I
had one in and two out, then I should dualize one of the Hilbert spaces. Then I
want to associate to this a particular element of the tensor product. I should be
able to act by a Diff(S1) element on one side and pull it to the other side. Let
me introduce the useful notation that will show up as we go along. What is LV ?
We want to extract an operator to this. We’ll write it as a contour integral

LV = ∮
dz

2πi
V (z)T (z)

and this only depends on z, not on z̄. I’ll talk more about the stress energy tensor in
a minute, but let me say that the element I associate to the pair of pants ∣ψ⟩ should
satisfy (Lv1 + Lv2 + Lv3)∣ψ⟩ = 0 if Lvi are the boundary values of a holomorphic
vector field on the surface Σ3. I can do this more generally, with a surface with
more holes in it and more Hilbert spaces and I can go on like that.

The key step, and this is where the bootstrap comes in, is to go to four holes
[picture] and I can obtain that by cutting it open into two segments with three holes
and I can ask about my Σ3 and Σ′3 which I can glue to Σ4, and I glue together
appropriately

∣ψΣ4⟩ = ∣ψΣ3⟩ ∗ ∣ψΣ′3
⟩

and I can get the same geometry by gluing in a different way, cutting in a different
way. [missed some about a question about formality of the variable z.] So maybe,
I didn’t quite finish this story, I should call this, if these boundary components are
a, b, c, d, then I could call these Σab and Σcd, and then they are glued along e and
I could also take Σad and Σbc glued along f . The way to think about this is the
following. These two things have to be equal, it’s a way to divide up the geometry
and I’m doing this by hand. The condition that these are equal, this is already the
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bootstrap equation. It turns very nontrivial when I combine it with the condition
that the Hilbert space has this structure. Now I can factorize the tensor product
and project the object restricted to each Va⊗Vā. Maybe I should make the drawing
again. Instead of making this an element of Hilbert spaces I make it an element of
the tensor product of the modules ∣Ψ⟩⟨−⟩ ∈ Va ⊗ Vb ⊗ Vc ⊗ Vd. This was obtained by
the gluing procedure between the two specified states with a specified thing in the
middle.

Maybe I want to interrupt this idea a little bit but let me say that this leads
to conformal bootstrapping because I can decompose these states into a product
of left and right movers. I can abbreviate this figure by its skeleton. I indicate it
as a double line diagram [picture] and I want to keep track of the labelling. This
thing here will be called a conformal block. It’s a Virasoro conformal block because
that’s the only condition I’ve imposed.

I’ve finished my lightning definition of what a conformal field theory is. In the
remaining minutes I’d like to write down the bootstrapping equation and mention
the claim that conformal blocks are naturally the wavefunctions or states obtained
by quantizing the Teichmüller space. The problem I discussed yesterday, these
wavefunctions are identified with the conformal blocks.

Let me make a couple comments about how this works. So T (z) is a quadratic
differential, and the space of quadratic differentials is the [unintelligible]. If I now
indeed make this other step, I project this thing now, and so rather than drawing
it like [picture], it becomes more natural to write it as a punctured surface, and it’s
possible to place them at (0,0), (1,1), (∞,∞), and (x, x̄). Then ⟨T (z)OaObOcOd⟩,
the definitions I made of the primary state tell me that this is

T̂ (z)⟨OaObOcOd⟩

then

T̂ (z) =∑
i

( hi
(z − zi)2

1

z − zi
∂

∂zi
)

the conformal Ward identity, where zi = {0,1,∞, x}. Now I can view this as the
quantization of a corresponding classical problem

T (z) =∑
i

( hi
(z − zi)2

+ ci
z − zi

)

and I claim that T (z) parameterizes the space and there are now actually four
parameters from ci and zi, but I view the ci and zi as coordinates on a phase space,
and the constraints express the SL(2,C) invariance of the conformal [unintelligi-
ble]functions, ∑i ci = 0, ∑i(hi+zici) = 0, and ∑(zihi+z2i ci) = 0. In addition, there’s
the claim that if you view this as a parameterization of Teichmüller space then the
Weil–Petersen form is of the form ∑dzi ∧ dci so at the level of Poisson brackets,
I have {zi, ci}WP = 1. If I go to the quantum theory I replace ci with

∂
∂zi

. Let

me make one further comment here, I omitted one parameter, I have an h̵ that I
multiply by T (z) and by each hi and so ci = h̵ ∂

∂zi
, and this makes a little more

precise the relation between h̵ and 1
c
. This is an indication about how the problem

of quantizing relates the conformal blocks to this Teichmüller space.
One last point, I’ve indicated the labels on my picture, how do I obtain these

more geometrically, let me see if I can do this, I can also say that T (z) is connected
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to the name “opers” and an oper is basically associated with the equation

( ∂
2

∂z2
+ b2T (z))ψ(1,2)(z) = 0

which means that (L2
−1 + b2L−2)∣ψ(1,2) = 0, we call this a null state. Now we can

write down the equation and differentiate the previous equation and write

∂2

∂z2
⟨ψ(2)(1,2)OaObOcOd⟩ = b

2T̂ (z)⟨ψ(2)(1,2)OaObOcOd⟩

and I can try to parallel translate, I can look at

( ∂
∂z
+ ( 0 b2T

1 0
))( ψ1

ψ2
) = 0

and now I can view this as a kind of flatness equation. Then I want to start defining
a conformal block, which tells me I should fix the h and the conformal channel in the
middle, and the way I do this is by doing the parallel transport wrapping around the
cycle in the middle, using my brother’s operator, the Verlinde operator, you take
two of these operators, writing the identity as a product of two of these guys, and
you move one of them around and let them annihilate, and this is basically related
to the tr(g1g2), and Lα is precisely the operation you pick up if you transport the
null operator around the cycle. If I require that this thing have some fixed geodesic
length as an eigenvalue, then the state that has that eigenvalue is the conformal
block.

I’ve argued two things, that the Hilbert space of states can be interpreted as
conformal blocks, and the last thing I want to write down is the expression of the
equality of the two ways of cutting. If you use the fact that the Hilbert space
factorizes into left and right movers, then I can sum over e, and the sum over e, ē
of my pictures, their absolute value squared, is ⟨OaObOcOd⟩ and this should be by
duality the same as the sum over f, f̄ of the absolute value squared. My spectrum
should be such that if I sum over all intermediate values in one picture then I should
get the same on the other kind of picture. So there’s a transformation, the Fuchsian

matrix, that relates these two, Fef (
a c
b d

) which should be unitary. Then e is

the eigenstate of ℓα and the other side is the eigenstate of ℓβ . Tomorrow I’ll explain
about how to do this for [unintelligible].

10. July 9: Kenji Fukaya: Floer homology for 3-manifolds with
boundary III

I am supposed to talk about analysis, but before I want to talk about one thing
I couldn’t get to last time, which is gluing formulas. So we consider ∂M1 =
Σ = −∂M2, with E1 and E2 which pull back to E∣Σ. Then we have the im-
mersions R(M1),R(M2) → R(Σ). Then as I explained, we can construct bMi in
CF (R(Mi))⊗Λ+, and this satisfies the Maurer–Cartan equation∑mk(bMi , . . . , bMi) =
0. If we write M for the union then we have

Theorem 10.1.

HF (M ;E) ≅HF ((R(M1), bM1), (R(M2), bM2))
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Let me talk some about this before moving to the analysis.
So consider W ⊂ C, roughly the set I’ll draw here [picture]. This is a neighbor-

hood of the union of the imaginary and real line. We consider W × Σ with the

metric χ(s)2gΣ ⊕ ds2 ⊕ dt2 where χ(s) = e 1
s for s < 0 and 0 for s > 0. So this is

singular when s > 0.
Then we glue, let me recall, take M1 ×R and its boundary is R ×Σ and I want

to glue it here [picture]. If I name the boundary components ∂i ×Σ then I’m gluing
M1 ×R to ∂4 and M2 ×R to ∂3, the negative real parts of the boundary. You have
a 4-manifold X with a metric g which is degenerate on one side. Then X has two
boundary components, ∂1 ×Σ and ∂2 ×Σ. X also has four ends, there’s a part tha
looks like M × (−∞,0]. Another looks like Σ × (0,1) × (0,∞). A third end looks
like M1 × (−∞,0] and the fourth end looks like M2 × [0,∞). So this X has two
boundary components and four ends.

So now we consider the moduli of anti-self dual connections. We have CF (M,E)→
CF (R(M1),R(M2)), and the generators are flat connections onM , a. On the right
side the generators are c ∈ R(M1) ∩R(M2). So I want to find this chain map and
show that it is a chain homotopy equivalence.

So I consider the anti-self-dual equations (as explained yesterday at the degen-
eracies) FA + ∗gFA = 0. So I need boundary conditions like A∣∂2×Σ(s, t) lies in
R(M2), and similarly for ∂1 and M1. Now we need some more conditions, now A
converges to a, a flat connection onM at the negative real end. At the positive real
end, I have this strip, a family of flat connections on this strip. This end should
naturally be c, the intersection of R(M1) and R(M2). The two more ends, you
see something like M1 ×R with these equations. I’d say that there A converges to
α ∈ [R(M2)]. [pictures]. This should look something like R(M1)×R(Σ)R(M2). On
the other side you have A converges to β which is in [R(M2)].

This is complicated. You can think about the picture of four Lagrangian inter-
sections [picture]. In this space the three-manifold plays the role of the Lagrangian
submanifold. This is a kind of boundary condition, very different from previous
ones.

So what I need to do, the boundary conditions, we need to require that the
energy of these equations is some fixed number. Then we take the sum of the count
of this moduli space times T weighted by the energy

∑#M(⋯)TE[h] = φ0(a).
So I fix some flat connection and some intersection point, we count the order of the
moduli space to get the coefficient and then sum up.

To prove that this is a chain map, we need to consider the case when this moduli
space is one-dimensional and look at the boundary.

You may have a disk bubble at the boundary, or at the four ends, something
could escape in the four ends. If you want to cancel. Of course, in general there is
a disk bubble. You use bounding chains in general to deal with disk bubbles and
we have the bounding cochains in this case too. I could write an equation but it
will take too much time.

Then I have the four ends. The first end is φ ○ ∂, where this is gauge theory
Floer theory boundary. The second boundary is ∂ ○ φ, and this is the Lagrangian
Floer theory boundary. The other two are zero; why are they zero? We required
that ∑nk([RH], b, . . . b) = 0 which means that [RM ] is a cycle. So these two are
zero, and the moduli space of dimension one, its boundary is just ∂φ + φ∂.
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So this is a chain map. I want to prove that this chain map induces an isomor-
phism in homology. Consider energy 0 solutions. You observe that actually the
flat connections correspond one to one to connections. Energy 0 is the identity,
and if you put the higher energies it’s a chain map. So then this becomes a chain
equivalence.

The rest of the time I want to talk about the analysis, which looks a little exotic.
So I want to say something about this equation. The equation I want to discuss

is this (this is in a recent preprint; the next thing is half in a paper in GAFA and
half not written). So here are equations

(1)

(∂A
∂t
− dAΨ) −

∗
2
(∂A
∂s
− dA ○ I) = 0

(2)

χ(s)2 (∂Ψ
∂s
− ∂Φ
∂t
+ [Φ,Ψ]) ∗ ∗

2
FA[illegible] = 0

Theorem 10.2. If we have A = A + Φds + Ψdt and these two conditions, A is
defined on the punctured disk crossed with Σ and energy is everywhere finite, then
[unintelligible].

So first of all I want to recall the following things. E is an SO(3)-bundle, then
EC is an O(2)-bundle and ∧dtEC ≅ C, that’s the same stuff. So A = Aut(E) and
AC = AutC(E). The first acts on connections on E. Then from A an SO(3)-
connection, we can write AC as a 1,0 part and 0,1 part, and A corresponds to
A0,1
C . The complex gauge group actually acts on connections on E.

So ∂̄ +A0,1
C = ∂̄AC , then this goes to g−1∂̄AC . There’s a famous story. We do this

for X = Σ, and all connections on Σ, we get a moment map

ConnΣ→ Γ(Σ,∧0,2 ⊗ so(3))
A ↦ FA, a curvature, which is a moment map of this gauge group. In the finite
dimensional case, we have stable connections modulo the complexified gauge group
this is µ−1(u) modulo gR. At the beginning, this implies that for A a connection
on Σ, with ∣Fa∣ < ϵ, then there exists a complex gauge transformation whcih takes
A to g∗CA0 and FA = 0. The flat connections all being irreducible implies that they
are stable. Then [missed]. You can assume that gC = exp(σ) and σ̄t = σ. You can
focus on the purely imaginary transformations.

The next thing, let X be a 4-manifold, say Σ×D2, and consider the complexified
gauge transformations, the claim is that equation 1 is invariant by gC. The second
equation is not. This first equation is ∂̄A0,1

C
∂̄A0,1

C
= 0. The first equation says this is

[missed].
So our energy is assumed to be finite, but we may assume that E(A) is very

small. Then FA is small everywhere. You can estimate using ellipticity. You have
this two-parameter family of connections. These connections are complex gauge
equivalent to flat connections. Then this implies there is some complex gauge
transformation gC so that A(s, t) = gC(s, t)∗A0(s, t) where A0 is flat.

Now I can remark that I consider this one, can just take [illegible] which is a
connection on (D2/0) ×Σ. You started with a family of connections flat when s is
positive, but then by the transformation they are always flat.

We have s, t mapping to φ(s, t) = [A0(s, t)]. So this gives a map D2/0 → R(Σ)
which is holomorphic. So this extends to D2 → R(Σ). Now we extend this, but this
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is not the end of the story. I want to do the following thing. Now we extend A0 to
everywhere. What we know is that this A = g∗CA0 and gC = exp(σ) with σ̄−1 = σ.
You need to check some real gauge transformatinos for this last condition. The real
part you can apply [missed]. I wnat to show that g∗CA0 is smooth. Then we will
obtain the theorem.

Lemma 10.1.
∣σ∣Ck ≤ Ck(logχ)2kχ2

where χ(s) = e 1
s for s < 0.

I don’t want to prove this, but let me talk a bit about it. [comments].
This one I want to explain. The proof just uses, we have to use the second

equation. I want to see what the second equation means. So Fexp(σ)A0
is something

like ∗dA0σ plus second order. This is just a calculation. Just check a bit and you
have this. Then the second equation is

dA0σ + c∣σ∣2 + χ(s)2[⋯] = 0.
And dA0 is invertible, so you have second order plus exponentially small things.
That’s a proof but you have to write down the estimate carefully.

The last thing I want to say is about Fredholm theory, which is not written, So
we have ∗FA + FA = 0. You want to cook up a solution space which is nonlinear.
You should find a Fredholm complex that controls this equation. You have the
Cauchy–Riemann equation on this side and antiself-dual equations on this side and
the boundary makes it so this can’t be Fredholm. So overlap it a little bit. On one
side you have one and the other side the other and you have a little overlap. You
have the AHS complex for s ≤ 0 and the Cauchy–Riemann complex for s ≥ −ϵ. You
have elements a and b and you have something on the overlap which is basically the
axiom for the Fredholm complex. You can still do something on the overlap. The
claim is that you get a Fredholm complex. For finite dimensionality of the index of
the operator, you consider a sequence, and you want to find a bounded sequence
that converges. Even with ellipticity, you can’t expect convergence, but if you go
to s ≥ − ϵ

2
. So first take a convergent subsequence that converges there. Then you

change by a boundary to make it converge in the desired place. So you have an
element that converges near the boundary, and then you can change it to converge
everywhere. I’m sorry I can’t say more.

11. Ludmil Katzarkov: Sheaf of categories and applications

Let me thank the organizers for giving me the opportunity to speak here, it’s
always nice to be in Pohang, maybe in drier weather. The sheaf of categories is
the main example, but this is part of a more general phenomenon which should go
under the name Kähler metrics on categories, I’ll start with

(1) a model and motivations, and then define
(2) Kähler metrics on categories, and then consider
(3) examples.

The second part is a joint project with Kontsevich, [unintelligible], and Pandit, and
the third part is published in a different form with Simpson, Nole, and Pandit.

Let me remind you that this is coming from the moduli space of Higgs bundles.
I have a Riemann surface C with g(C) > 1. The pair (E,Φ) is called a Higgs bundle
when E is a rank two bundle on C and Φ is an endomorphism in H∗(C,End⊗KC),
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with coefficients in the canonical class of this curve. The Higgs bundles form a
moduli space MHiggs, the dimension of this moduli space is 6g − 6, and so to a
pair like that, you can correspond a so-called linearization, a spectral covering, a
subscheme of the cotangent bundle of C, C̃ ⊂ T ∗C, and C̃ is given by the equation
dt(λ − detΦ) = 0, where λ is the topological section in this cotangent bundle, so

C̃ is a two-sheeted covering of C ramified as we can easily see from the definition
in 4g − 4 points. So now that’s what was observed by Hitchin in 1986 and then
later on this theory was developed to any group and any algebraic variety X, and
eventually [unintelligible]extended this to any projective variety. The result that
started with Hitchin, Hitchin observed that there’s an analytic isomorphism, real
analytic, between the moduli space of Higgs bundles and representations of the
fundamental group of C in SL(2,C), and as we can easily compute this is also
6g − 6 dimensional, as every element corresponds to a matrix, and you can do this
in three dimensions of ways, and you have the action of SL(2,C), and that indeed
gives a 6g − 6-dimensional space of representations. This observation led to many
applications of this moduli space of Higgs bundles. They were considered as a non-
Abelian Hodge structure. They have nice properties like functoriality and so-called
“strictness.”

I’ll briefly talk about this strictness, which we’ll want, and I’ll try to define this
in the most painless way. This moduli space of Higgs bundles has a C∗-action on
it. This C∗ action extends on the compactification of this moduli space and the
fixed points of this action defined by λ acts on (E,Φ) by taking it to (E,λΦ), and
the fixed points of this action are called complex variations of Hodge structure.
These are Higgs bundles that split in a peculiar way. The complex variations of
Hodge structure let you put some variation of classical Hodge theory on this non-
Abelian Hodge theory. Let me mention one consequence. You could have the
following geometric situation. Say you have an algebraic surface S and you have a
configuration of curves on it, Ci for 1 ≤ i ≤ ℓ, let’s say for simplicity they are all P1

(actually it doesn’t matter) and assume now you have a representation ϱ of π1(S)
on a reductive group over C (in particular this could be SL(2,C)) and then the
rich structure you have on the moduli space of Higgs bundles lets you prove the
following. Assume that ϱ restricted to Ci is trivial for all i, then ρ(π1(T )) → GC
is trivial as well (here T is the union of the curves). So that is certainly wrong
in the case that this is not an algebraic surface. You use the whole machinery of
the moduli space of Higgs bundles to prove this statement. It has some immediate
consequences. In particular, it leads to the proof of the following theorem

Theorem 11.1. Let X be a smooth projective variety such that π1(X) is contained
in some GC, a complex linear group, say GL(n,C). Then X̃, the universal covering
of X, is holomorphically convex.

This is the strongest uniformization theorem after Riemann, who proved

Theorem 11.2. If the dimension of X is 1 then X̃ is one of P1, cC, or D, so
either Stein or compact.

The idea of holomorphic convexity is a combination of holomorphic and Stein,
a space is holomorphically convex if contracting all compact submanifolds gives
something Stein. Let me give an abstract definition of holomorphic convexity.
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Definition 11.1. X, a complex manifold, is called holmorphically convex if and
only if for every infinite sequence of poitns x1, . . . , xn without a limit point, there
exists a holomorphic function f , unbounded on this sequence.

Clearly something that is compact is trivially holomorphically convex. What
does this statement about holomorphic convexity have to do with the statement
I mentioned from the theory of Higgs bundles and the moduli space of represen-
tations? This goes back to [unintelligible](not the one of that name mentioned in
Kenji’s talk but a different one) who noticed the following:

Assume that we have a situation as the one described before, I have an algebraic
surface and a configuration of curves T on it, made of Ci, and the image of π1(Ci)
in π1(S) is trivial but the image of π1(T ) in π1(S) is ∞. Assume we have such a

situation. Then what does this mean? It means that in the universal covering S̃,
the configuration of curves opened up, since the whole thing has infinite fundamen-
tal group, and I can find an infinite sequence of points on this chain which by the
maximum principle will have that every holomorphic function is constant. So I can-
not find an unbounded function on this sequence. So if I exhibit this phenomenon,
the universal covering will not be holomorphically convex.

Non-Abelian Hodge theory does not allow that, as one can see, which is the
major part of the proof of this theorem.

Unfortunately, there is a restriction, which tells me I have to have a Higgs bundle,
so this doesn’t work for groups not contained in reductive or linear groups. So we
need a different kind of Hodge theory. We have a nice action, a nice extension to
the compactification, and a little bit more. Another way to think about the Higgs
bundles is that they correspond to maps U ∶ X̃ → G/K, or if you like ϱ ∶ π1(X)→ G,

I get such a harmonic map, and if I have a family of such representations, I get Ũ ∶ X̃
to some building, [unintelligible]. These are basic ideas from non-Abelian Hodge
theory. What we’d like is a new theory with this kind of strictness, connected to
this type of categories.

I’ll move to the second part of my talk, which is Kähler metrics on categories.
This will eventually change many times, but that’s a little bit my point of view
of these things. Eventually there will be I guess a more uniform way to look at
this and I guess it won’t be my way. Let me present what I think about this. I’ll
certainly try to imitate the Higgs bundle story here. So let me start with an A∞
category over C, a non-Archimedean field k. So let me introduce some data,

D0 a category C0 which is A∞ and a functor C0 ⊗Ok
k → C, where Ok is the

integers of k. You can think of this as a fibered catgeory where the fiber
over E consists of Met(E), so-called metrized objects, which are objects

with a Hermitian norm, which I’ll define. So Met(E) is pairs (Ẽ, h) where
h ∶ Ẽ ⊗Ok

k → E is a morphism that identifies these two in the category
upstairs. This plays the role of my family of Higgs bundles. We should also
have a stability condition Z ∶ kCont(C)→ C, so let me put here, continuous,
which means k0,alg, well I can just say k0(C), and I fix a stability condition,
which is going to play the role of the Kähler class. The Kähler metrics are
the class of this stability condition.

D1 I also have a flow on Met(E) which is given by the action of R, which I
can think of as logR∗>0, I think of R as morphisms of E. The idea is, I have
this flow and if I have this moduli space of Kähler metrics and the flow
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converges, then just like I had the complex variation of Hodge structures,
I’ll get nothing else but the stability condition for the category.

D2 I have a function Mass from Ob(C0)→ R≥0
D3 I have two other functions, negative and positive amplitude, Amp− and

Amp+ from Ob(C0)→ R, and
D4 I have a function SC on the objects into the complex numbers, the com-

plexified Kähler potential, there’s a little bit of unclarity what is the general
situation for this function so I won’t discuss it now.

This data should satisfy the following six axioms. We have the three actions, Z the
(shift), R≥0 (the flow) and R (the scaling)

A1 Z⋉(R≥0 ×R) acting on Ob(C) should satisfy that [1]○ rescale○ [−1] = 1 and
[1] ○ flow ○ [−1] = πrescale + flow and [rescale,flow] = 1

A2 The shift, onMass, on Amp+, and on Amp−, this should preserve the mass,
acts on the amplitudes by adding π, and preserves the potential. Similarly,
the flow makes the mass get smaller, Amp− gets bigger and Amp+ gets
smaller, and the equlities I wrote before tell us how the rescaling behaves
in this.

A3 Additivity — the ⊕ in this category C0 commutes with this group Z⋉(R≥0×
R) and then Z( ⊕ ) = Z + Z and SC( ⊕ ) = SC ⊕ SC, this becomes
a bit like tropical geometry as Amp−( ⊕ ) = min(Amp−,Amp−) and
Amp+( ⊕ ) =max(Amp+,Amp+)

A4 Existence of the limit, this Simpson type of compactification; for every
gauge, the limit eflow t(E,h) is in the Berkovich F log compactification of
Met(E), so I’ll say a couple of words a little bit later,

A5 The function im(eiθSC(E,h)) is bounded below by a subharmonic function,
here θ − π/2 ≤ Amp− ≤ Amp+ ≤ θ + π/2, and

A6 The mass of (E,h) is at least ∣Z(E)∣ for all E,h, and so with the flow. . .

Now the definition will be that this data 0 through 4 satisfying these axioms will
be called the moduli space of metrized objects, and if we allow E to move this will
be the moduli space of Kähler metrics on C. So now let me give an example, which
is Db(pt), and in this case, let’s say that E is some complex V1 → V2 → ⋯ → Vn,
then Met(E,h) is an inductive limit over k of Gi/K1 × ⋯ × Gi/Ki+k), and you
need to take an open domain here, that is nothing else but d∣ ∣ < ∣ ∣i−1,0. Now in
this case, the mass function is just the sum of the dimension of the homologies

∑hi, the amplitudes Amp− and Amp+ are the lengths of the complex (times π;
this is a little bit fishy), and the potential SC, let’s say that I have two objects,

SC(E1,E2, α) = τ(Cone(E1
αÐ→ E2)). So now the compactification of this Met in

this case are the stable objects in this category with [unintelligible]filtration, by
analogy with the moduli space of Higgs bundles.

The example I wanted to talk about is connected with Kapranov’s work which
is the sheaf of categories, SL(2) Higgs bundles and the corresponding map is the
compactification of Teichmüller space that Verlinde was talking about but I guess
I am grossly over time.
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12. June 10: Mikhail Kapranov: Combinatorial approach fo Fukaya
categories of surfaces III

Recall that last time we had C a pre-triangulated dg category, and we constructed
S⋅C, the Waldhausen construction, and we’d like to represent S⋅C asMapdgCat(Sn,C)
with Sn a co-cyclic (Connes) object, 2-periodic in dgCat.

12.1. Constructing Sn via matrix factorizations. If A is a commutative ring
or W is in the center if it’s noncommutative, we consider complexes M0 and M1

with d between the two, with d2 =W . The category of these things is MF (W ). So
Hom between two of these is an actual complex, this is a 2-periodic dg category,
like connections with scalar curvature.

This has a graded version also. Suppose that we have an Abelian group L,
suppose A is graded, A = ⊕λ∈LAλ, and ∣W ∣ = 0, then we can talk about graded
matrix factorizations, MFL(A,W ), where everything preserves grading.

The simplest example has A = k[z] and W = zn+1, the An-singularity, this
has degree n + 1 and we take L = Z/n + 1 and deg(z) = 1. Then we can define

Sn =MFZ/n+1(k[z], zn+1). Then the cyclic structure is manifestly clear. This is a
dg category and Z/n + 1 acts on the nose. The theorem is that

Theorem 12.1. (Sn) form a co-cyclic object in dgCat and SnC ≅Map(Sn,C) for
any two-periodic C.

From this we can continue the discussion of surface Postnikov systems a little
bit more rigorously. We start with (S,M), a marked surface, with S hyperbolic.
Suppose T is a triangulation with vertices in M , or any polygonal decomposition.
We can combine triangles into a polygon. In every triangle, the arcs are not oriented
but the surface is oriented. So there is a cyclic order on the vertices. This means
we can associate to the triangle canonically the associated ST for the set of vertices
T . Then we can define the category of Postnikov systems of type T as PostT (C) =
Mapdg(T , S⋅(C)). We look at collections of triangles in this thing, [unintelligible],
and the corollary is the following theorem

Theorem 12.2. Up to Morita equivalence (and all higher coherences among such
equivalences) the category PostT (C) depends only on the surface and the set of
marked points but not on the triangulation. We use the fact that the partially
ordered set (building) of all polyhedral decompositions is contractible.

You have triangluations as vertices, flips as edges, some pentagon relations for
2-cells, and so on. [picture].

So we get canonically a differential graded category Post(S,M)(C) or better yet
F(S,M,C) since it’s a version of the Fukaya category. Now let me say a little more
about that connection to the Fukaya category.

I recall the very basic setup, if (X,ω) is a symplectic manifold, then one result
is the construction of a triangulated category F(X) (a priori A∞) whose objects
are pairs (Λ,L) where Λ is a Lagrangian manifold and L a U(1)-local system, so
that very naively, Hom(Λ,L), (Λ′,L′) is

⊕
x∈Λ∩Λ′

Hom(Lx,L′x)

when these are transverse. The differential and A∞ structure comes by counting
pseudoholomorphic disks. Now this is of course a sophisticated analytic construc-
tion. People were trying to consider situations where this was more algebraic and
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can be approached in a more straightforward way. So in particular, there was a pro-
posal of Kontsevich to localize the Fukaya category for some particular symplectic
manifolds, on some skeleton, some kind of “Stein” symplectic manifold (meaning it
can be represented as the neighborhood of a skeleton.)

For such X, F(X) can be localized on (possibly singular) Lagrangian skeleton
K ⊂X. I’ll write two points and then discuss a cetain point of view on them.

What does it mean to localize? One should be able to construct a sheaf R of dg
or A∞ categories RK on K so that F(K) ≅H0(K,RK).

For K a graph on a surface, the stalk of RK at x with valence n + 1 should be
(possibly 2-periodic), well, D(2)Rep An, and in here we have the Coxeter functor
which satisfies Cn+1 = id. Recall that a Waldhausen diagram Aij is determined up
to isomorphism by its first row A1 → ⋯ → An, since Aij = Cone(A0i → A0j . Now I
want to make a remark on this approach in general.

We can think of the Fukaya category as a categorification of homology, not just
forming an Abelian group but a category. It’s clear that

(1) F(X) categorifies a part of the middle dimensional homology or cohomol-
ogy, with support.

(2) Kontsevich’s proprosed RK categorifies Hn
K(Z/X). [pictures].

In all known examples, H≠nk (Zx) = 0. This is a categorification of the spectral

sequence for cohomology with support. Defining F(X) as H0(RK) is an analogue
to Hn

k (X,Z):
Hn
k (X,Z) =H0(K,Hn

K(ZX)).
Another point also proposed by Kontsevich is to look at coefficients for the

Fukaya category. If you’re talking about homology, you might say we’re only in-
terested in the integers, but when you try to understand complicated manifolds in
terms of simpler ones, there’s just no way—it’s very useful to do this. Even if you’re
interested in the regular Fukaya category of (X,ωX), under π ∶X → Y , it gets some
coefficients. Here π is some kind of map compatible with Poisson brackets.

Our proposal is that you should look for coefficients, not the analogue just of
sheaves, but of perverse sheaves. That’s what I want to explain in the remain-
ing time. Let me first of all recall the definitions and then say why perversity is
important (because it has something to do with cohomology with support).

So let me recall the situation. Suppose X is a complex manifold, and that it
has a complex analytic stratification S = (Xα). So one can imagine the manifold
is smooth, the strata are smooth but not closed and the closures may be singular.
Suppose k is a base field. Then we have the category Perf(X,S), an Abelian sub-
category in S-constructible complexes of vector spaces DbS−const(X), so in particular
this includes local systems on X, like usual sheaves.

I’ll basically recall perversity. (Perv−) means that Hi(F) is supported on codi-
mension at least i. Then Perv+ is dual. This means that H0 is everwhere, H1 only
on divisors, and so on. So if k is the field of complex nubers, then Perv(X,S) is
DX −modhol,regS−smooth.

This has remarkable properties, such as the purity property. Suppose X and S
are given and K ⊂ X is a totally real submanifold. This means like Rn inside Cn.
We know that for a Kahler manifold, [unintelligible], so anyway, K is totally real
such that the intersection of K iwth a stratum is totally real in the stratum. Then
for all F ∈ Perv(X,S) we have Hik(F) = 0 for i ≠ n. This holds for the constant
sheaf but not ordinary sheaves. So perverse sheaves are natural in problems with
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skeleta. For us this was the convincing reason that we should look at perverse
sheafs.

This means that the functor from perverse sheaves Perv(X,S) to Sh(K) which
takes F to RK(F) = Hnk .

We can find an analogue of Maxim’s proposal if we [unintelligible].
We want to understand this category in terms of representations of a quiver. We

want to define the category as the category of representations of the quiver Q−, so
we should have vector specs and maps, if we want an equivalence. For every sheaf
we get a vector space. We take a skeleton, we put Vi the stalks of RK(F), and
now let me finish with one example, perverse sheaves on the disk with a possible
singular point at 0. The stratification consists of 0 and its complement. So then
Perv(D,0) consists of ϕ and ψ and a ∶ ϕ→ ψ and b ∶ ψ → ϕ, subject to the relations
1ψ − ab is invrertible.

So ϕ is the stalk of the sheaf L at K = 0 and the other at K. In this case we
have a categorical analogue, which is the concept of a spherical functor. This was
introduced by Anno and Lagvinenko. We have two pre-triangulated cotegories and
a map S ∶ D0 → D1. There is a right adjoint D∗. There is a map IdD0 → S∗S and
we can take the cone on this, and we get T0. Similarly, we can take the cone on
{SS∗ → IdD1}. Now S is called spherical if Ti are both eqeuivalence.

So we can look at perverse schobers, the conjectural categorical analogue of per-
verse sheaves. We have the agricultural terminology from French, now in German
there is nothing like this. So Schober is a German word for a stack. If you say
stack in this context it would be confusing. Some people wanted to use German
agricultural terms, so Hirzebruch called sheafs Garbes and presheafs Garbendatum.
So Schober means stack, like a stack of hay. So I’m out of time, thank you very
much.

13. Vladimir Hinich: Enriched infinity-categories

[missed the beginning]
We all like usual categories and we know that categories in homological algebra

are enriched over something. I want to present what seems to me a very obvious way
to define such objects and maybe also to work with them in the infinity category
world. I have probably first to say something about what infinity categories are
or how one can think about them. It’s not completely common knowledge. There
are various more or less commonly thought of as equivalent ways to define infinity
categories. I do not want to stick to a certain model, but instead want to give
a vocabulary of what one can do with them. I’ll mention certain models to give
examples or stress certain points.

It’s useful to have in mind the picture in Kapranov’s second lecture when he said
a few words about dg categories. I’m talking about ∞-categories, and some people
call it (∞,1)-categories for those who don’t know in what meaning I use this term.

Let me list the features of this thing.

(1) an ∞-category C has objects and for a pair of objects x and y we have a
space of maps Map(x, y), defined up to homotopy. I’m not giving a precise
definition, so I’m allowed to say an obscure sentence like this. Sometimes
space means topological space and sometimes Kan simplicial set, depending
on what you like.
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(2) There is a compositionMap(y, z)×Map(x, y)→Map(x, z) defined uniquely
up to homotopy. Sometimes you have an explicit composition and some-
times you have the data that lets you recover this up to homotopy. This is
associative up to homotopy.

The first example is a conventional category where the set of maps is a
discrete space.

In particular, for each ∞-category C you can define a conventional cat-
egory ho(C) which has the same objects and connected components of as
the set of maps;

Homho(x, y) = π0(Map(x, y)).

We have an obvious map π ∶ C → ho(C) which is the identity on objects and
projection to components on maps.

Definition 13.1. A map α is an equivalence if π(a) is invertible. What is
usual isomorphism is replaced by equivalence. For isomorphism you should
have strictly associative multiplication.

(3) An equivalence of∞-categories, well, I won’t define this but a map f ∶ C → D
is an equivalence (Dwyer–Kan equivalence) if
(a) The maps Map(x, y) →Map(fx, fy) are equivalences of spaces (per-

haps weak homotopy equivalences depending on the definition of spaces).
(b) The map ho(C)→ ho(D) is an equivalence of categories.

This is the world we live in. It’s not clear the objects of an ∞-category do not
form a set but a space. Let me mention immediately one concrete model which is
however very inconvenient, but easy to understand. That is, categories enriched
over Kan simplicial sets or topological spaces, maybe even easier.

What is the difference between what I said and the model? In this the composi-
tion is associative on the nose. Here everything is strict and a structure describable
in this way is rich enough to cover the things that interest us, but morphisms of
categories are too restrictive. We might put a model category structure on these
guys. You should replace C by something cofibrant and then everything would be
okay.

This is a model where you don’t see immediately how to define a space of objects.
An ∞-category C is called an ∞-groupoid if all arrows are equivalences and I

would, so any ∞-category C contains a maximal ∞-subgroupoid which I call K(C)
and of course this is the same as if you start with a conventional category, the
maximal subgroupoid. This is like the moduli space of this category. I’d like to
persuade you that ∞-groupoids are basically the same as spaces. At this moment
it’s basically a slogan. In this concrete model, what I can do is just present a
functor that becomes an equivalence on homotopy categories.

You have a functor from simplicial groupoids to Kan simplicial sets given by the
nerve, there are different versions but they are basically equivalent. This is the
maximal subspace of an ∞-category and I’d like to look at this as follows.

Let me introduce a number of important categories. There is an ∞-category S
of spaces, an ∞-category Cat of ∞-categories, and an adjoint pair of functors

S Cat
K



GAP XIII 45

Another important feature is the following. If I have two ∞-categories, I can form
Fun(C,D). You’d like a model where everything is cofibrant. Since most things
are not cofibrant, this model is not very nice.

For regular categories we know that functors form a category. This means ∞-
categories should be a form of two-category but we have no language to explain
this.

What we know about ∞-categories is enough to construct limits and colimits.
An object x in C is initial if Map(x, y) is contractible for all y. This is the way we
are talking about uniqueness in this world. A similar notion gives terminal objects,
and then after some preliminary work we can explain what it means to have limits
and colimits.

Now (and probably the last thing that comes in mind) once we have a model
categoryM we can associate to it a certain∞-category N (M), in this language the
Dwyer–Kan localization of M with respect to isomorphisms, L(M,W ). I under-
stood this idea only recent although this is long known for intelligent people. The
model category structure is a choice of coordinates for those who like coordinate,
but we really care about the ∞-category.

The model structure is a good tool to construct something. As a choice of
coordinates sometimes it’s useful.

For the ∞-categories obtained from model categories, the limits and colimits
correspond to homotopy limits and colimits in the model category, so this is really
the correct notion. Of course if you apply this to regular categories you get the
regular definition, but that’s less interesting.

I can’t move to my suggestion because I first have to explain how to talk about
monoidal categories. I will use the term category instead of ∞-category, and if
I want to mention a conventional category I will call it a conventional category.
This is not a trivial question and the easiest thing is to take Segal’s definition, an
associative algebra object in categories. A monoidal category is a functor ∆op → Cat
such that two conditions are satisfied:

● M0 = ∗
● the Segal condition that Mn →M1 ×⋯×M1 which comes from embedding
the intervals {i, i + 1} into {0, . . . , n} is an equivalence.

This is basically Segal’s definition for the algebraic structure on the loop space.
This is an ∞-version of an associative algebra. I’d like to leav this definition on the
blackboard because I’ll come back to it later.

What I want to explain is a part of this, I want to have a notion of associative
algebra in a monoidal category. This is also not a very obvious notion. A monoidal
category is an associative algebra in the category of categories, but I used a trick
in the monoidal structure of the category of categories, it’s Cartesian. So it’s not
very honest. This is correct, though, and easy to give.

There is a simple conventional monoidal category that I call Ass which for those
who know this world is sort of a PRO for associative algebras. I can say what it
is precisely but this is not important. Even in the conventional world you can use
monoidal functors from this one to your monoidal category to give algebras in that
monoidal category. So that’s my definition here.

So this is my notion of algebra. I’m ready to say the formulation of the problem
that I’m trying to suggest.



46 GABRIEL C. DRUMMOND-COLE

Given a monoidal ∞-category M , what is an M -enriched one? When M is not
just monoidal but Cartesian, there is a well-known definition from a Segal type
construction. In this case the constructions will be basically equivalent.

I need that M has colimits, so let me define CatL, which is categories with
colimits and functors preserving colimits. If I have two ∞-categories, then I have a
product. Then this is monoidal. I can define X ⊗Y like a tensor product of vector
spaces. You can talk about universal objects representing bilinear maps.

We define X × Y → Z to be bilinear if it preserves colimits in each argument,
and let X ⊗ Y represent bilinear maps.

I require M to be an algebra with respect to this structure, so my monoidal
structure preserves colimits in each argument.

The idea (I’m ready now) is extremely simple. There’s an idea even easier than
the notion of category. This is the notion of a quiver. If you look at the dictionary,
this is a container for arrows. This doesn’t have a composition. Let X be in S and
M in Alg(CatL). Then QuivX(M) is the category of functors Fun(Xop ×X,M).
To each choice of sourc and target you get an object in M . This works perfectly
for ordinary categories.

Definition 13.2 (Pre-definition). An M -enriched category with objects X is just
an algebra object in QuivX(M).

Two remarks.

(1) The most nontrivial part is to define a monoidal structure on quivers.
(2) I don’t like that I had to fix the space of objects. This can easily be

avoided. You consider families of these guys over spaces, and a relative
monoidal structure where you can multiply only in the same fiber. I won’t
spend time on this, this is a formal thing.

The first remark is very important.
Let me say what I am going to do to solve the first problem. A toy version,

which is very nice. Everybody knows there is a notion of matrix in linear algebra.
If you have an associative ring R and a finite set X, there is a notion of a ring
of matrices whose columns and rows are numbered by X with values in R. How
will you define this? If you don’t care about multiplication, you’ll define this as
Map(X ×X → R). It’s a table of numbers. Let me write down Map(Xop×X → R)
where op means nothing here.

The student asks how to multiply these. If you like formulas you will write
down a formula and spend thousands of blackboards proving it’s associative. In my
case you have an infinite number of coherences to check. Here you have another
way. You say, I will construct a free module Map(X,R), and I’ll define my ring
as EndR(Map(X,R)). This is what we will be doing here. Let me stress once
more. It’s hard to define an associative algebra structure in the ∞ world. There
are exceptions. Once you define an A∞ structure on a category, you write down
mk for all k and prove that they are compatible. Usually you try to use a universal
property. One example I’ve mentioned you probably haven’t paid attention to.
If you have a Cartesian structure, this gives you a unique (up to some certain
usual things) algebra structure. A similar example was suggested by Lurie. The
endomorphisms of an object M are defined by a universal property, the universal
object that admits an action of X ×M → M . This doesn’t require associativity.
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But if you have a universal object then it will automatically give you a composition.
There’s parts of this that are hard to check but luckily Lurie already did it.

To define a multiplicative structure on the category of quivers, I’ll present it as
the category of endomorphisms of another category.

The claim is that QuivX(M) is FunLLMod(M)(Fun(X,M)) (here LMod(M)
means left tensor modules over M).

Let me just add that Fun(X,M) are all functors, this is the same as FunL(P (X),M),
where P (X) are simplicial presheaves, because presheaves are constructed univer-
sally from the colimit property for X. This is, when X is small, M ⊗P (Xop), sort
of a dual object.

So this gives you a monoidal structure.
Let me show some very simple case. I’m not sure you’ll give me time to explain

the compatibility with the stronger notion. Let’s look at M = S. What do we
expect to get if our monoidal category is the category of spaces? We expect to get
the same definition. This will also be an exercise in monoidal structures, not so
obvious how to do it. This is what I intend to present.

We have the category C. There is a natural thing, connected to it, a functor
Y ∶ Cop × C → S. This should be our answer. This should be somehow presented
as an associative algebra object in the appropriate category. What does it mean
to have quivers over C of S. I gave a definition when C was a space, now it’s a
category. So this is FunL(P (C), P (C)). If you look carefully at the definitions,
you see that this is of course the same as Fun(Cop × C,S), and the isomorphism
takes the standard Yoneda Y to the identity in FunL(P (C), P (C)). We have as a
collection of objects C which should be a space, but this is a nice start.

Once you have an algebra in this category, it restricts to an algebra in any
subspace of C, and it’s natural to take the maximal subspace QuivK(C)(S). This is
lax so it carries algebras to algebras.

I intended to say something more but maybe it’s less important. This is equiva-
lent to a definition with complete Segal spaces. There’s an issue about completeness.
Of course it should just be added, otherwise, yeah. You should also add complete-
ness or a condition or localize if you have two different ways to take care of things.
You get Segal spaces and not complete Segal spaces.

14. Aleksei Bondal: Categorical Interpretation of flops

Thank you very much for inviting me to this exciting conference. I’ve already
learned a lot. My talk is about joint work with A. Bodzcuta. First I should recall
some ideology from a joint paper with Orlov in 1995, which is the homological
interpretation, a homological minimal model program. First I should recall what
is the minimal model program, denoted MMP, and then homological put an H in
front, HMMP. This is about birational geometry. For X a surface, with E = P1 ⊂X,
with self intersection number −1, then there is a map from X →X ′ which contracts
E to a point. On X ′, you can find another −1 curve, contract it, and so on. You
can continue this process and get to a minimal model. It might happen that you
find another curve and contract it, you might come to another minimal model that
is not isomorphic.

For example, consider a blowup of P2 in two points. When you blow up a point,
P1 appears as in this picture, so you can go down to P2. But if downstairs you look
at a line through these two points, then you can pull it back upstairs and that also
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has intersection number −1 and you can contract just this one line and the result is
P1 × P1. People tried to generalize to higher dimension, and realized that smooth
varieties are not enough, you should consider singular varieties, and the MMP is
about how to generalize this story.

I won’t describe this whole theory which is really huge, so I’ll just say a few words.
You might consider some morphisms of various types, you could have divisorial
contraction f ∶ X → Y as you had here. You have in X a divisor D, a curve being
a divisor means it’s codimension 1 and it might be contracted to something C
that is not a divisor, and the dimension of C, well f is a birational morphism, the
dimension of X and Y are equal, say n, and dim D = n − 1, but the dimension of
C is less than n− 1. It could be fibered or it could be the whole divisor contracted
to a point.

The other situation that we found is so-called flips. This is also a birational
morphism X → Y , maybe I’ll describe this in more precise terms later. This is not
a morphism, it’s just a birational map, there points of indeterminacy of the map,
an example of a birational map is the map in the opposite direction X ′ → X, it’s
a birational morphism outside the contracted point. That’s why I call it a map,
not a morphism. Nevertheless, you should somehow compare canonical classes
in X and Y . One of the conjectures from this paper, the idea is that somehow
the canonical class governs the behaviour of the derived category. The flip is the
following. You can blow up X to f ∶ X̃ → X and everything is birational, and you

have a composition to X̃
gÐ→ Y which is everywhere defined. A birational map can

be presented as a birational morphism from a blowup. Maybe now I’ll assume for
simplicity that everything is smooth, which is not necessary in general. So you can
look at f∗(ωX) ↪ ωX̃ and g∗(ωY ) ↪ ωX̃ . This is called a flip if one of these is
contained in the other, but we call it a flop if these two pullbacks coincide.

Conjectures from this paper of ’91, we call in this paper (well, another one), we
called these generalized flips and generalized flops. The point is that you consider
a contraction of X to something singular Z and you have another variety X+ and
you have a birational morphism X → X+, and you have somehow for a birational
morphism of this type, you can present it in this way. For instance in dimension
3, Kollar proved, a birational morphism between Calabi–Yaus is a generalized flop,
and in this case every generalized flop is a composition of ordinary flops.

The MMP goes by using divisorial contraction and flips to get a minimal model,
and there are more than one minimal model but they are related by flops. You
can see that these two models in my example in two dimensions have different
canonical classes. The flops have the same canonical classes. That makes the high
dimensional setting more complicated and more interesting.

Now about HMMP, the idea, first, is that you should consider the derived cate-
gory D(X), by which I mean the bounded derived category of coherent sheaves on
X. This minimization should be viewed as being about the minimization of this
derived category. In what sense? There are various conjectures. One of them is
this.

Conjecture 14.1. If you have a generalized flip, then the derived category of Y is
fully faithfully embedded in the derived category of X.

If you have a fully faithful embedding of one category into the other A↪ B, you
have a decomposition B = ⟨A,⊥A⟩. You need this inclusion to have an adjoint. You
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should have for each X in B a decomposition A → X → A′ with A ∈ A and A′ in
⊥A which is something so that Hom(A,⊥ A) is empty.

Conjecture 14.2. Flops induce derived equivalences.

Today I will discuss flops only, and under fairly strong conditions.
Maybe I should describe an example of a flop.
Consider a 3-dimensional smooth variety X and a curve E in it isomorphic to P1,

but now NX/E is rank two, assume it’s OE(−1)⊕OE(−1). This is an assumption.
This will really be a flop, not a derived flop. You have a contraction of X to
something singular, Y , by contracting E to a point. You can blow up and you have
X̃ with a divisor D ≅ P1 ×P1 which projects to E. Another nice fact, you have this
map that contracts P1×P1 → P1, and you could also contract in the other direction,
the other P1, so to X+. So this X+, naively, you have P1 and its complement. You
remove P1 and glue it back in a different way. Locally, the singularity, the E and
E+ map to the point, and around this there is a three dimensional [unintelligible].

It might happen that the result of the flop, it still exists as a complex analytic
variety but might not be algebraic. But if Y is the spectrum of a local complete
ring, then it’s okay in the vicinity of the singularity.

The situation where I have one curve and I want to contract it in the direction
of the flow, so over the singular point if you have just one component curve you can
check that it should just be P1. The normal bundle NX/E (assuming it’s a smooth
projective variety) is either O(−1) ⊕ O(−1) or O ⊕ O(2) or O(1) ⊕ O(−3). We
worked out the first two cases and the third case, which is the most complicated,
was worked out by Tom Bridgeland, who said that if you have X over Y , X is
smooth, and Y has a terminal singularity (I won’t explain this) and is Gorenstein
(the singularities are minor) then the flop exists, and X and X ′ are isomorphic but
the maps are different.

The point is that he didn’t just show it, he constructed X+ as the moduli space
of an object in X. In the derived category of X there is a T -structure. But there
is another such structure which will be important for my talk today. In fact, he
constructed a family depending on an integer p. For my talk, p = 0 or −1.
−1Per(X/Y ) = {E ∈Db(X)∣R1f∗H0(E) = 0; f∗H−1(E) = 0; HiE = 0, i ≠ 0,−1; Hom(H0(E),Af) = 0.

Here Af is the null-category of f , which is the objects E in Coh(X) such that
Rf∗E = 0. This is important for flops; I’ll explain why later.

The basic idea of the T -structure is that we have the derived categories of X
and Y and the pushforward

D(X) Rf∗ÐÐ→ D(Y )
and Af is a subcategory of Cf which is a subcategory in D(X), the kernel of this
map to D(Y ).

You can think of this as a situation in topology, when you glue T -structures,
you should glue with some accuracy because if you take the adjoint functor it’s no
longer the bounded derived category and f ! is unbounded in the other direction.

This parameter p is how you shift one of these categories, the T -structure in
one of the categories. Neither of these T -structures is the standard T -structure in
coherent sheaves.

This was Bridgeland. The next step for us was done by Michel Van den Bergh. He
interpreted these two T -structures as the category of modules over some algebras
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downstairs. The point is, assume now that Y is affine, consider a kind of local
situation, and one can prove that the derived category of X is equivalent to the
derived category of perverse sheaves for −1 and for 0,

Db(X) ≅Db(−1Per(X/Y )) ≅Db(0Per(X/Y )).
He claimed that there exists a so-called projective generator M in −1Per(X/Y )
and N ⊂0 Per(X/Y ), which are projective objects which generate their categories;
for any object A in the category there is a nontrivial morphism from the generator
into A.

Then these are actually vector bundles over X, and you can consider the local
endomorphism algebra and push forward to get Af = f∗EndXM and Bf = f∗EndN .
The claim is that Af -modules is equivalent to the category of −1Per(X/Y ) and
similarly Bf -modules for 0Per(X/Y ).

Now our first result, these facst imply together, I forgot to say, he showed that if
you consider D(X+), these categories are just exchanged. Under this equivalence,
for X and X+, these coincide, that is,

−1Per(X/Y ) ≅0 Per(X ′/Y ), 0Per(X/Y ) ≅−1 Per(X ′/Y )
which happens because Af ≅ Bf+ and Bf ≅ Af+ .

The functor goes, we have this picture

X̃
p+

  B
BB

BB
BB

B

p
��~~
~~
~~
~~

X // X+

and you get a map F = Rp+∗Lp∗.
[missed a comment about Bridegland]
It was Chen who first generalized to the case when X and X+ are Gorenstein

terminal (Bridgeland had only Y Gorenstein, X and X+ were smooth) but he also
showed that the functor D(X)→ D(M =X+) was just F .

So the flop functor in the opposite direction is Rp∗Lp
+∗, and F +F ≠ id. One

point of my talk is to show that this is spherical with respect to [unintelligible], and
it can actually be shown to be in two ways up to shift.

I said that Van den Bergh does not actually quite use the flop functor. It doesn’t
give you a nontrivial automorphism of the derived category.

Maybe I should say a few words about the setup of Van den Bergh. We put the
condition that Y has canonical hypersurface singularities of multiplicity 2, which
means basically that you can locally around every point describe your variety Y
in Yn+1 where f starts from x21 plus something that doesn’t contain x1, this is a
multiplicity 2 singularity, they all look like this. If you look at the exceptional locus
Ex(f) of f in X, the places where this is not one to one, then the codimension
in X of Ex(f) is at least 2 and the relative dimension of f is 1. So you could
do Y ∶ x1 → −x1 and xi → xi, this is an involution, you can pull back along this
involution, the thing is mapped into Y in a different way.

This is the setup in which we work. The first thing in which we did was a
description of Van den Bergh’s and the flop functor. We can identify the derived
category of X and these perveres objects. Now I assume Y is affine to simplify
the story. Then P0(1) is the category of projective objects with respect to the T -

structure in 0(−1)Per(X/Y ). Then Hot(P0(−1)), this is equivalent to D(X). and
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Hot(P1) → Hot(P+0 ). We termwise push forward and pull back, so that V dB =
(f+∗f∗( ))∨∨ and this is the Van den Bergh functor. That’s not a big deal. The
point which is a much harder statement is that something similar is true for the
flop functor.

Theorem 14.1. (B,B.)
f+∗f∗( )

is the flop functor.

The proof of this fact is based on a lemma, if M is an object in P−1, you can
push forward and pull it back, Lf∗f∗M , a priori these could go on forever, but it
turns out that L1 is trivial. L2 is nontrivial, I call it P = L2f∗f∗M , because it lies
in Af .

Then

Theorem 14.2. P is a projective generator in Af , and Db(Af)
ψÐ→ D(X) is a

spherical functor. From this it follows that Af is Ap-modules End P .
The spherical twist TX = (F +f)−1) and the cotwist Cψ is the identity functor

twisted by 4.

Maybe I’ll stop.


